

INVENTORY MANAGEMENT PRACTICES, RETAILER-SUPPLIER COLLABORATION AND SUPPLY CHAIN PERFORMANCE OF RETAIL STORES IN NAKURU COUNTY, KENYA

MWANGI P.

University of Embu, KENYA

Correspondence: nduati.peter@embuni.ac.ke

Abstract

Retail chain stores in Kenya are facing unprecedented change in the external environment disruption affecting supply chains motivating integration of inventory management practices with retail-supply chain collaboration to achieve expected supply chain performance. The objectives of this study were to determine influence of continuous replenishment to establish inventory optimization and supply chain collaboration on supply chain performance in retail chain stores in Nakuru County. The research adopted a descriptive survey research design and surveyed 106 retail chain stores in Nakuru County. Primary data was collected using questionnaires and analyzed using descriptive analysis and inferential statistics techniques, correlation and regression analysis. Results revealed that continuous replenishment contributed significantly (B_1 = 0.576, PV = .001<0.05) to supply chain performance in retail chain stores in Nakuru County. There was a strong, significant and positive (B_2 =0.307, PV=.001>0.05) relationship between inventory optimization and supplier chain Performance. Combining inventory management practices, continuous replenishment and inventory optimization with retailer-supply chain collaboration resulted in an increase in RSquared of model 1, 0.440 to 0.459 demonstrating that joining continuous replenishment and inventory optimization with supply chain collaboration has a significant positive impact on supply chain performance. Successful continuous replenishment and inventory optimization together with retailer-supplier chain collaboration resulted in supply chain efficiency.

Keywords: Inventory Management Practices, Retailer-Supplier Collaboration, Supply Chain Performance of Retail Stores, Nakuru County, Kenya

Introduction

Supply chain management is a key focus in implementing inventory management systems because customers want products or services available at the right time, at the right place, at the right price, and in the right quantity. Correct supply chain performance crosses both functional lines and company boundaries. Supply chain performance improvement is a continuous process that requires both analytical performance measurement methods [1]. One also need to initiate the process to meet the key performance indicators [2]. Today, the logistics network and supply chain are the security and competitive advantage in business. Thus, effective supply chain management practices are a way to achieve supply chain performance and gain competitive advantage in a competitive world [3]. Product management practice is an important determinant of success that contributes to good inventory management and flexibility [4]. The main task of inventory management practices is to achieve the lowest possible installation costs without compromising the system performance level [5]. Too many products and not enough customer service is good, but not necessary. Assets cannot be limited or insufficient, thus, the purpose of asset management is to determine and maintain the best level of investment assets, which contributes to achievement of the desired objective [6].

The purpose of inventory management is to change the overall and general business objectives of the day-to-day operations of inventory management and to balance investment in products and customer services [7]. This is because companies that have large inventory often bear warehousing costs, such as storage, transportation and administrative costs [8]. Globally, retailers have invested in infrastructure and technology such as the integrated value for managing critical assets and information systems that can improve visibility across the supply chain through supply chain processes such as integration, collaboration, forecasting. and continuous improvement (CPFR) in the vision of weapons and the real supply chain [9]. Modern companies use inventory management practices such as Just-in-Time, Quality Control, Vendor Inventory Management (VMI) and Information Technology an overall impact on supply chain performance. Effective inventory management practices in the retail industry can have a significant impact on the company's performance. Demand is driven by various target markets and

support activities to meet customer demands and needs through a lean supply chain [10]. A retail chain company includes many products that must be sold to end users. The retail industry has undergone unprecedented changes as competition grows in the market and the consumer [11]. That VMI has been used widely to improve supply chain performance shows that VMI is an effective tool for improving supply chain operations by reducing inventory and growth-related costs [12]. Customer Service.

Inventory Management Competition in retail stores promotes improvement in all aspects of inventory management, such as flexibility, cost effectiveness, and on-time performance. The purpose of the supplier management system is to provide both internal and external customers with the required level of service through quantitative measures and execution [13]. A good inventory management system provides visibility up and down the supply chain, which reduces inventory costs, product costs and associated capital, shortens delivery times, and - improves supplier relations [14]. Achieving cost efficiency and operational efficiency in retail stores has increased the importance of inventory management practices in the Kenyan retail sector. Stores in the Kenyan retail chain invest in developing VMI practices such as focusing on ICT integration of inventory operations, investing to improve poor practices such as demand management policies, improving product delivery process and focus on adopting supplier management practices.

Statement of the Problem

The retail industry in Kenya faces high competition and complex inventory management [15]. Currently, Kenya has more than 300 retail stores across the country. Many of the retail stores such as Tuskys, Nakumatt, Ukwala and Naivas among others have put retail stores under supervision. Notably, the market share/penetration in retail chains is still low, between 25% and 30%. The level of installation and store breakdown has supported the introduction of inventory management practices and collaboration in the retail chain. Changes in supply chain operations from inventory management requires a study that integrates inventory management requires a study that integrates practices with supply chain collaboration in retail stores to bring efficiencies to the home market in the Nakuru region of Kenya.

Literature Review

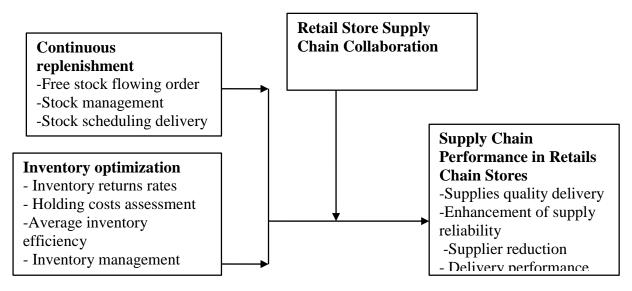
Theoretical Review

The lean theory [16] supports the observation that the system is based on the ability to change business production and research during the agile chain. This innovative concept eliminates waste from the development process and brings better results and a better supply chain postulating that stock as the best inventory management tool. This concept explains suppliers adjust their reference options, reduce processing and closing inventory and reduce inventory due to labor costs. Ntutu et al 2017 [17] analyzed their issue on the reduction of solid level products and observed that the power of descriptive analysis depends on the individual level depending on the situation and scope of the work. Companies that truly develop revenue by implementing systems achieve high profitability and customer loyalty. processes seamlessly Contingency theory applies to project managers of different work areas. As shown in [18], changes in the parameters of the class lead to the realization of the collected ones. The theory assumes that the relationship and management of shareholders is a determinant of change in management performance in tea management companies. The most important part of the game is a very expensive product. A useful function can be a combination of financial and non-financial purposes [19]. A company's efficient execution and cost-effective expansion can be managed. Organizational performance can be defined from different angles, thus each tea processing company has a new situation, which makes it new to predict the implementation of the project [20]. The role of inventory management is to change the relationship based on the financial and non-financial benefits, the value of the system and the concept of chains that work well.

Inventory Management Practices Deployed in Retail Chain Stores

Continuous improvement is an inventory management practice that retailers can use. The purpose of the ongoing innovation is to improve the efficiency of the equipment and the transmission system, so the pipeline stock can be significantly reduced. Sustainable practice uses environmental information system of retail stores to identify sustainable interests through SCP development. A continuous innovation model is designed to accommodate this development by creating an end-user base using continuous investment

strategies combined with adaptation through operational planning, taking into account the connection between, package security and robot analysis. [21]


Inventory management can be defined as a strategy and process that deliberately identifies and manages inventory and the quantity they will deliver. Integrated decisions are required regarding the magnitude of the demand, the time it takes to deliver, and the total cost incurred [22]. In the strategic plan of the connection, the decision about the level of security and the area of the relationship is necessary to meet the needs of customers [23]. Effective delivery management, when implemented in any organization, creates efficiency and provides a competitive advantage over other organizations. This is especially true for charities that depend on the success of their resource management. Cao and Zhang [24] explored different concepts for improving supply chains including; infrastructure, logistics, resource management, media and infrastructure wile elsewhere the importance of applying technology in the supply chain as a factor that improves SC performance has been emphasized [25]. In order to remain competitive and important in the global market, many retail stores have started supplier partnerships [26] to improve supply risk management and meet strict performance expectations. Important relationships in the supply chain focus on improving supplier capabilities, sharing new products, shared generation strategies, developing marketing strategies, and creating cost-effectiveness [27]. Many researchers have studied supply chain collaboration, and its benefits, such as cost savings through lower levels of inventory and smaller warehouses and distribution centers, are some of these factors emerging from the intervention process. Companies that work together can improve their performance; improve customer satisfaction, increase market share and generate revenue while fostering positive relationships with supply chain partners [28].

Therefore, the performance of the supply chain (SCP) is determined by product turnover, distribution costs, and top management's support for the firm's strategy and sales force [²⁹]. Supply Chain Performance (SCP) can be measured using parameters such as quantity, flexibility, schedule, quality, price, customer satisfaction, return on investment (ROI), market value percentage, and current value [³⁰].

The relationship between information sharing, asset management and customer satisfaction has been investigated by Ethiopian garment industry and a positive relationship was established between information sharing, product management and customer satisfaction [31]. Pearson correlation coefficient of distribution information and customer satisfaction was 0.850 ** Pearson correlation coefficient of distribution information and Inventory = 0.864** and Pearson correlation of product management and customer satisfaction is 0.814**. The study concluded that strategic collaboration and information sharing between suppliers and customer value collaboration lead to higher levels of customer satisfaction.

Conceptual Framework

Dependent variable

Independent variable

Figure 1: Conceptual Framework

Research Strategy

Research Approach

Descriptive research is suitable for research design including generalization, analysis and interpretation of results. Descriptive analysis methods are used to facilitate integration of different data collected and provides a better understanding of the research problem [32]. Descriptive research helps researchers combine the different aspects of qualitative and quantitative research methods and application of data analysis techniques to answer broad questions at the level of the research topic. The target population is a list of items, people, or things that have the same characteristics and are being studied [33]. The target of this

study are 32 shops operating in Nakuru. This study is exploratory, so we use a quantitative approach that includes all selected stores.

Participants/Respondents

The respondents of the survey represent 106 employees of 32 retail stores in the region, among them purchasing managers, supply managers and material managers.

Data collection methods used for the study.

Procurement Managers, Finance Managers, Infrastructure Managers, ICT Managers and Relationship Managers were assigned to each of the 106 selected officials in Nakuru County. A pilot study was conducted to test the validity and reliability of the instrument. The overall reliability of the instrument showed that the instrument was reliable with a Cronbach's value of 0.814. expert opinions that are taken into account when collecting data Statistical analysis

Data was analyzed using statistical methods of means and standard deviations. The study also used cognitive, logical and interactive methods to identify inventory management practices and supplier collaboration in retail supply chain performance. The study used test to test whether the hypothesized sample was significant at the 0.05 level. F-test was used to test the goodness of fit of regression models.

Discussion of Results

Descriptive analysis

This section provides data on the influence of supplier collaboration on supply chain performance of supermarkets in Nakuru County.

Table 1: Continuous Replenishment

Continuous Replenishment	Mean	Std Dev
The supermarket achieve free flowing order fulfillment	4.142	.649
Reduction in line inventory	4.573	.489
Timely inventory replenishment	3.869	.841
Reduction in frequency of ordering	4.676	.578

Identification of real time demand due to up-to-the-point- of-sale information	4.281	.451
Achievement of store ready packaging	4.548	.476
Achievement of stock listing efficiency	4.467	.501
The supermarket achieve stock controls	4.503	.765
The supermarket achieve logistic networks	4.074	.683
Attainment of accurate forecasting of capacity requirement	4.002	.813
Average	4.3135	0.6246

Based on the results on Table 1, the store of the retail chain makes frequent replenishment, as the respondents agree (Mean=4.3135, SD=0.6246) that the experience of the store is reduced frequently to 4.573. The company has achieved inventory management, quality product manufacturing, real-time demand identification for sales information, and a free-flow system for integration into the distribution network. The respondents explained that supermarkets have adopted sustainable supply as a means of management in order to achieve success and efficiency in the installation in Nakuru County. It is supported by observations that supplier managed sales (VMI) improves the variety by responding to unmet customer needs and makes sales and better performance [30].

Inventory Optimization

The study sought to understand the extent to which inventory optimization influences supply chain performance in retail chain stores. The results are presented on Table 2

Table 2: Extent of Inventory Optimization in Retail Chain Store

Statement related to Inventory Optimization	Mean	Std Dev
Increase inventory control	4.564	.51874
Quality controls of supplies	4.442	.87985
There is foster supplier quality improvement	3.767	.49889
There is increase in flexibility to cope with changes	4.396	.46482
There is efficient sourcing	4.690	.52185
Efficient distribution of goods due to time-phased requirements schedules	4.557	.46482

There is enhanced network with the customer service requirements	4.515	.90000
There is optimal stock requests and supplies in the supermarket	4.531	.52136
There is controls the supermarket logistics operations	4.283	.52762
There is increase in retail supply data accuracy	3.891	.7624
Increase in supplier collaboration	4.041	.9218
There is more channel of communication to foster information sharing	3.793	0.801
Average	4.2892	0.6486

In terms of inventory optimization, respondents agreed with 4.2892 and a standard value of 0.6486 that retail stores are flexible and that flexibility increases inventory control, and efficiency of distributing products. In addition, the store chain achieves supply chain management through product optimization, manufactures quality products, achieves inventory control in stores, and improves supplier support.

Supplier collaboration in Retail Chain Stores

Out of 106 questionnaires administered,91 (85%) responded in time for data analysis. This rate was considered appropriate to derive the inferences regarding the objectives of the research.

Table 3: Extent of Deployment of Supplier collaboration in Retail Chain Stores

Extent of Deployment of Supplier collaboration in Retail Chain Stores		
We improve of risk sharing to improve suppliers commitment	4.3088	.87360
The retail stores gain flexibility	3.7647	.66928
We increase supplier contract performance	3.7794	.55366
The enterprises share information that foster their decision making	3.7426	.60854
The retail store report Improvement in the accuracy of forecasts	3.7574	.43027
There is incentives for partners in supply chain	4.1397	.57185
The retail store are able to resolve critical supply chain risk	4.2426	.63824

Accelerating and managing demand plans, direct material	4.7794	.41618				
procurement and fulfillment throughout the supply chain						
The retails stores make joint decision making with ease	3.8162	.44225				
Average	4.0367	0.5782				

Results on Table 3 clearly show that retailers use a collaborative approach to achieve the best installation performance. On average, respondents believe that retail stores use supply chain coordination to accelerate and manage demand planning, direct sales and fulfillment through the supply chain, and in a 4.0367 way with a standard deviation of 0.5782. It can facilitate shared decision-making, increase supplier efficiency, achieve stability and redundancy, and improve return on investment.

Supply Chain Performance

Table 4: Supply Chain Performance in Supermarkets

Supply Chain Performance measures	Mean	Std Dev
Improvement in Level of supplier output	4.2700	.70861
Provision of error-free products in sales volume	4.5700	.62044
Improve Supply chain cost efficiency	4.1800	.41145
Improve order-to-delivery lead time	4.4500	.55732
Improve customer satisfaction	4.5400	.73745
Improvement in quality of chemical products	4.0400	.76436
Supply chain flexibility	3.5200	.46883
Supply chain response time	4.2600	.71943
Delivery performance	4.1732	.49237
There is improvement in supply cycle time	3.935	0.672
Average	4.19382	0.615226

The study investigated the extent to which retail stores receive supply chain services. On average, the respondents agreed that the sales force supports supply chain performance by 4.19381 and the value of 0.615226. This clearly shows that retail stores in Nakuru County are achieving a certain level of delivering flawless products, increasing sales value,

improving customer satisfaction, providing quality products, improving delivery time, response time supply, cost effectiveness, and improving the delivery system. time. This result agrees with previous reports [9] that the inventory management system contributed to delivery cycle time and delivery performance.

Correlation analysis

Table 5: Correlation between Inventory Management and Supply Chain Performance Correlation coefficient

	Supply Chain Performance in Retail Chain Stores
R	.712**
Sig. (2-tailed)	.000
N	106
R	.736**
Sig. (2-tailed)	.002
N	106
	Sig. (2-tailed) N R Sig. (2-tailed)

Results on table 5 show that there is a strong, significant and positive relationship between continuous supply and Market performance in Nakuru County, Kenya based on coefficient $r=0.712 \, \text{PV} = 0.000 < 0.01$). The results predicted a strong and positive relationship between supply and demand for shop operations in Nakuru area. There was a strong, significant and positive relationship between inventory optimization and installation performance in stores in Nakuru District, Kenya based on coefficient r=0.736, PV=0.002 < 0.01). This result predicts a significant positive relationship between inventory optimization and supply chain performance in stores in Nakuru region.

Hypothesis Testing

Relationship between Continuous Replenishment and Supply Chain Performance

The study hypothesized that continuous replenishment has no significant relationship with supply chain performance in retail chain stores in Nakuru County. This was tested using a partial regression model $Y = \beta_0 + \beta_1 X_1 + \epsilon$

Table 6: Model Summary of relationship between Continuous Replenishment and Supply Chain Performance

Model R	R Squ	ıare	Adjusted R Square	Std. Error of the Estimate	
1	.713ª	.507	.505	1.45742	_
	nuous enishment				

ANOVA Results

Table 7 present results on the goodness of fit of the regression model.

Table 7 ANOVA Results on relationship between Organizational innovations and Growth of DTSACCOs

Mo	del	Sum of Squares	of	df	Mean Square	F	Sig.
1	Regression	381.391		1	381.391	92.480	.000b
	Residual	428.729		104	4.124		
	Total	748.857		105			

Independent Variables: (Constant), Continuous Replenishment

Dependent Variable: Supply Chain Performance

Table 8: Beta Regression Coefficients of Relationship Between Continuous Replenishment and Supply Chain Performance

Model	Unstandardized Coefficients		Standardized Coefficients	T	Sig.
,	В	Std. Error	Beta		
(Constant)	6.901	1.145		6.027	.000

Continuous Replenishment

.576

.159

.565

3.626

.007

Dependent Variable: Supply Chain Performance

The R-squared of 0.507 shows that there was a difference or relationship between continuous supply and continuous input that has no significant relationship with the input performance of the building in retail market in Nakuru County. The sample analysis results in Figure 6 show that R2 is 0.507, Std Error= 1.45742, which shows that there is a significant difference of 50.7% in the closing order with no significant relationship in Nakuru County in the installation of retail stores showing that the F. -ratio of the model is 92.480, P = 0.000 < 0.05. These results confirm that the regression model $Y = \beta 0 + \beta 1X1 + \epsilon$ adopted in this study has a good fit. The results were given a univariate regression model:

Y=6.901+0.56X1+e.

Results on Table 8 showed that continuous supply has a positive effect on the performance of retail stores in Nakuru County as B1= 0.576, PV = 0.007<0.05, t= 3.626). The results show that the increase in the supply sector continues to lead to a significant increase in the installation performance of supermarkets in Nakuru County B1= 0.576. Therefore, the condition is: β 1 \neq 0 where the sum of the constant filling is not zero, P= 0.000 < 0.05, so the study rejects the null hypothesis and accepts the alternative hypothesis accepted; β 1 \neq 0, indicating that continuous supply has a positive effect on the performance of retail stores in Nakuru town.

Relationship between Inventory Optimization and Supply Chain Performance

The study hypothesized that inventory optimization has no significant relationship with supply Chain Performance in Retails Chain Stores in retail stores in Nakuru County. This was tested using a partial regression model $Y = \beta_0 + \beta_2 X_2 + \epsilon$

Table 9: Model Summary

Model R R Square

Adjusted R Square Std. Error of the Estimate

1	.844a	.714	.771	1.11168	
Inv	entory Op	timization			

Table 10: ANOVA Results

Model		Sum Squares	of	df	Mean Square	F	Sig.
1	Regression	53.060		1	53.060	42.928	.000b
	Residual	127.308		103	1.236		
	Total	180.368		104			

Independent Variables: (Constant), Inventory Optimization

Dependent Variable: Supply Chain Performance

Table 11: Beta Regression Coefficients

Model	Unstandardized Coefficients		Standardized Coefficients	T	Sig.
	В	Std. Error	Beta		
(Constant)	11.717	.509		22.999	.000
proactiveness	.307	.0898	.301	3.416	.001

Independent Variables: (Constant), p inventory optimization

Dependent Variable: Supply Chain Performance

R-squared of 0.714 shows that there is a difference or relationship between resource optimization and installation performance in retail stores in Kenya. The results of the sample analysis in Table 9 show that R2 is 0.714, Std Error= 1.11168, indicating that there is a significant difference of 71.4% between the production and optimization of goods and retail stores in the state of Hug up. The results shown in Table 10 show that the F value of the model is 42.928, P=0.000<0.05. These results support the regression model adopted by this study, $Y=\beta 0+\beta 2X2+\epsilon$ with a very good quality as F=42.92 8. The regression results showed that inventory optimization has a positive and positive effect on the performance of retail stores in Nakuru County (B2= 0.307, PV = 0.001<0.05, t=3.416). The results suggest that one-unit increase in inventory optimization leads to a significant increase in the installation performance of supermarkets in Nakuru County according to factor B2=0.307.

Therefore, the condition $\beta 2\neq 0$, where the number of product optimization is not zero, P= 0.000 < 0.05, so the study rejects the null hypothesis and accepts the alternative hypothesis, which is accepted that there is a significant relationship between product optimization and power supply between chains stores in Nakuru County. The results confirm [15] that better inventory management helps to improve supply network and reduces costs.

Testing for Moderating Role of Retail Suppliers Collaboration

Multivariate Regression Analysis

The study performs multiple regression analysis to determine whether there existed a significant variation between selected inventory management practices (Continuous replenishment and Inventory optimization) and supply chain performance in supermarkets in Nakuru County, Kenya.

Table 12: Model Summary

Model Summary							
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
1	.663a	.440	.438	.41590			

Predictors: (Constant), Continuous replenishment and Inventory optimization

b. Dependent: Supply Chain Performance in Retails Chain Stores

Table 12 provides a summary of results of several simulations. R-Squared showed that there is a significant gap between continuous supply and inventory optimization and supplier engagement and installation performance in retail stores in Nakuru County and r =0.663 as the standard deviation is 0.05. The revised R2 is known to be proactive in identifying and revealing differences in supply chain performance across major markets in Nakuru County. From the collection of samples in table 6, the adjusted R2 value is 0.438. This shows that 43.8% of the installation work in Nakuru county supermarket is not working due to changes in product management practices which are improvement and optimization.

Table 13: ANOVA

Model		Sum Squares	of	df	Mean Square	F	Sig.
1	Regression	3.784		2	1.892	10.937	.000b
	Residual	28.429		103	.173		
	Total	24.000		105			

a. Dependent Variable: Supply Chain Performance in Retails Chain Stores

On Table 13, the total variance (24,000) is the difference between the independent variable (Sample) and the independent variable (Error). The ANOVA results examine whether the regression model was successfully obtained. It examines whether all the variables independently have a complete or combined effect on the installation performance of the retail store. Analysis of variance (ANOVA) showed that total samples were statistically significant and regular implementation and inventory optimization were significant factors for installation performance in retail stores in Nakuru County. The calculated F-value of 10.937 0.000 < 0.05 is higher than the F-critical 1.527. This clearly shows that there is a good correlation between inventory management system and installation performance in retail stores in Nakuru County. The results confirm that independent variables are valid predictors for the installation performance of supermarkets in Nakuru County, Kenya.

Table 14: Beta Coefficients

Coefficients a					
Model	Unstandardized Coefficients		Standardize d Coefficients	t	Sig.
	В	Std. Error	Beta		
1 (Constant)	.431	.689		5.623	.000
Continuous replenishment	.274	.0359	.265	7.626	.000

b. Predictors: (Constant), Continuous replenishment, and Inventory optimization

Inventory optimization	.486	.0898	.461	5.416	.001	
------------------------	------	-------	------	-------	------	--

a. Dependent Variable: Supply Chain Performance

The resultant multivariate regression model as indicated as substituting the beta coefficient was

$$Y = 0.431 + 0.274X_1 + 0.486X_4 + \varepsilon$$

Results Table 14: Cost regression results show that continuous supply has a positive effect on supply performance of supermarkets in Nakuru County as B1= 0.274, PV = 0.000<0.05, t=7.626. The results show that increasing the supply ratio always leads to a significant increase in the installation performance of supermarkets in Nakuru County B1= 0.274. The results show that increasing continues to increase the supply chain's workload. Inventory management systems help in the efficiency of the tea industry. Regression results showed that inventory optimization has a positive effect on supply chain performance in supermarkets in Nakuru County (B2= 0.486, PV = 0.001<0.05, t=5.416). The results show that a one-unit increase in inventory optimization leads to an increase in the installation performance of stores in Nakuru County according to factor B2=0.486. The results confirm reports of [20] that better inventory management helps to improve the supply network and reduce costs.

Table 15: Moderating effect

Model Summary								
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate				
1	.663a	.440	.438	.41590				
2	.677a	.459	.453	.61484				

Predictors: (Constant), Predictors: (Constant), Continuous replenishment and Inventory optimization

Predictors: (Constant), Predictors: (Constant), Continuous replenishment and Inventory optimization, Inventory Management practices *Suppliers Collaboration

b. Dependent: Supply Chain Performance

Results presented on Table 15 show that when the salespeople were presented with the relationship between the product management system and supply chain performance, the

R-squared was positive from 0.440 to 0.459. This shows that 45.9% of the chain's performance is explained by inventory management practice that continues to provide in the development of products and the beginning of cooperation with suppliers.

Summary, Conclusion and Recommendations

Summary of Findings

Results showed a positive relationship between delivery and continuous installation in a supermarket in Nakuru County, Kenya. The regression results show that supply continues to have a positive effect on the performance of retail stores in Nakuru region. This shows that continuous replenishment helps to reduce the frequency of processes, organize channels, improve the success of ready-to-pack, and the impact of supermarkets to achieve inventory control and thus improving efficiency in the supply chain. The results show that the store has improved inventory and actual demand identification as a result of sales information and free entry. The study showed a strong, significant and positive relationship between product optimization and installation performance. The regression results also showed that the increase in inventory optimization led to a significant positive increase in the installation performance of retail stores in the Nakuru region. This shows that the increase in flexibility in the supply chain makes the store more flexible, increases inventory control, and the efficient distribution of products due to the need for cycle time affects the performance of the installation in the retail store. Prioritizing quality deliveries time, improved supplier productivity, supply chain efficiency, improved delivery service, improved chemical product quality and improved supply cycle time. The results show that supplier collaboration has a positive effect on the performance of retail stores. The correlation results show a strong, significant and positive relationship between supplier relationships and performance of retail stores. Supplier collaboration promoted long-term cooperation, increased product coordination and development of information between suppliers and retailers.

Conclusion

The study concluded that regular replenishment contributes significantly and positively to performance of supermarkets in Nakuru region. Continuous improvement leads to reduction of repetitive processes, reduction of production lines, development of ready-to-

use packaging, improvement of product management and development of suppliers, as well as improvement of efficiency and timely identification of products. Appreciating the information obtained from vendors, or building a complete system for free, creating a network of weapons, creating an accurate capacity policy, improving the production time of the supermarket - contributing to taste. Delivery efficiency, reduced supply cycle time and increased delivery cost efficiency equipment optimization decisions lead to positive and efficient growth in the installation performance of supermarkets in the Nakuru region. Through inventory optimization, supermarkets have increased supplier flexibility, better inventory management, better product distribution for scheduling, accurate inventory requirements, and increased customer service and management control, and -Increase customer satisfaction - delivery time, scheduling, supplier productivity, improving supply chain costs, increasing delivery efficiency, improving chemical product quality and increasing delivery cycle times.

5.3 Recommendations

Management of retail chain should develop and implement measures to promote continuous supply to improve supply chain performance, which is important for supermarkets in the Nakuru region. Continuous replenishment can be achieved by using frequency, increasing ready packaging, increasing inventory control and improving suppliers, improving product quality, identifying requirements in time, sending information and fulfilling for free up to the point of sale, building a logistics network, improving the opportunity for accurate forecasting of the capacity and facilitating the closing of stocks in time in the store up to the level which helps in increasing delivery efficiency, reducing supply cycle time and improving supply chain. The study suggests that the management of the retail store needs a method to increase suppliers, improve product management, improve product distribution through on-demand scheduling, best-in-class software and network optimization. This would improve the delivery process turnaround time, production speed, increase the cost efficiency of the delivery, delivery efficiency, availability of quality products, and increase the supply cycle time.

References

- 1. Avittathur, B. Jayaram, J. (2016). Supply chain management and economic development capacity management: knowledge and expansion. Corporate Marketing Management, 57, 185-200.
- 2. Azadegan A. (2018). Exploiting supplier innovation performance: The effect of supplier evaluation on adoption capacity. Journal of Management, 47(2), 49-64.
- 3. Chowdhury, M. Quaddus, M. Agarwal, R. (2019). Supply chain resilience and performance: the role of relational behavior and network complexity. Supply Chain Management: An International Journal. 24. 10.11-18.
- 4. Aziz, M.T. Nur, N.A.M. (2013). Evaluating the impact of consumer factors on relationship behavior, International Journal of Retail & Distribution Management, 41 (7): 545-558
- 5. Arani W. (2018). Truckers deliver building materials to Kenyan manufacturing companies. Strategic Journal of Business Management and Change, 2.40-66
- 6. Tangus C.C, Oyugi L.A., Rambo, C. (2015). Investigating the impact of supplier relationship management practices on the performance of manufacturing companies in Kisumu County, Kenya. British International Journal of Economics, Business and Management. 3 (11)
- 7. Vermeulen, J. Niemann, W. 2019. Exploring Chain Resilience in the South African Telecommunications Industry. Contemporary Management Journal. 16 (2) 331-360
- 8. Maestrini V., Martinez, V., Neely, A., Luzzini, D., Caniato, F., and Maccarrone, P. (2018). Relationship management: a process for measuring the performance of customer-supplier relationships. International Journal of Operations & Production Management
- 9. Mwangi, P., Ragui, M., Arani. (2021). The Relationship between Supplier Support and Business Performance in Nairobi Region, Kenya: A Modeling Role of Backward Regression. International Journal of Education in Human Resource Management and Business, 3(10), 46-66
- 10. Liao, W., Wang, T. (2019). A New Relational Model for Workplace Productivity Delivery Considers Time Windows and Carbon Emissions. Support (Switzerland). https://doi.org/10.3390/su11102781
- 11. Yang, Y., Jia, F., Xu, Z. (2018), Towards an integrated conceptual framework for supply chain learning: a resource-based context, Supply Chain Management: An International Journal, 24 (2), 189-214, doi: 10.1108/SCM-11-2017-0359.
- 12. Nasir, A., Soares, A. Lottermoser, B. (2017). Inherited organizational performance? Perspectives of generation Y and the influence of leadership style", Leadership and Organizational Development, 38 (8), 1078-1094
- 13. Yang, Y., Pan, S., Voting, E. (2017). Inventory planning of an innovative supplier using integrated logistics services in the Internet of Things", International Journal of Manufacturing Research, 55 (9), 2685-2702.

- 14. Weraikat, D., Zanjani, M.K., Lehoux, N. (2019). Enhancing sustainability in a two-tier pharmaceutical delivery model through a supplier management procurement system, Healthcare Services Research, 21, 44-55.
- 15. Wettasinghe, J. and Luong, H.T. (2020) Supplier-controlled inventory policy for fast order, Journal of Industrial and Production Engineering, 37 (2-3), 120-133
- 16. Krause, D.R. (2018). The important factors of the manufacturing company for the development of the suppliers. Journal of Project Management, 17(2), 205-24.
- 17. Ntutu J.F., Hult G.T.M., Ringle C.M., Sarstedt M. és Thiele, K.O. (2017). Oballah, D. 2015. The Role of Supplier Development and Organizational Structure in Kenyan Breweries: A Case Study of East African Breweries Limited. International Journal of Education and Research, 3 (3), 683-694.
- 18. Wachiuri E. W., Waiganjo, E., Oballah, D. (2015). Role of supplier development on organizational performance of manufacturing industry in Kenya: A case study of East African Breweries Limited. *International Journal of Education and Research*, 3(3), 683-694.
- 19. Naburuk C.L. (2018). Contribution to the supply chain and return on investment in aid organizations in Kenya. Thesis report. University of Nakuru, Kenya.
- 20. Hudnurkar M., Jakhar S., Rathod U. (2024). Factors influencing supplier engagement: a literature review, Procedia-Social and Behavioral Sciences, 133: 189-202.
- 21. De Giovanni P. (2021). An intelligent supply chain with managed inventory for suppliers, organization and environmental performance, European Journal of Operations Research, 292 (2), 515-521
- 22. Peng Y., Dong M., Li X., Liu H., Wang, W. (2021). Interactions of ocean energy and site boundaries: balancing environmental costs and benefits. Journal of cleaning products. https://doi.org/10.1016/j. jclepro.2020.123816
- 23. Al-Abdallah, G.M., Abdallah, A.B. Hamdan, K.B. (2019). The impact of supplier relationship management on the competitive performance of manufacturing firms. International Journal of Business and Management; 9, 2.
- 24. Cao M. Zhang Q. (2021). "Collaborative Contribution: Implications for Collaborative Value and Firm Performance," Journal of Operations Management, 29(3): 163-180.
- 25. Carr, A.S. Smeltzer, L. R. (2010). The relationship between strategic marketing and supply chain management. European Journal of Purchasing and Educational Management, 5(1), 43-51.
- 26. Cox, A. (2020). Regional jurisdiction and strategic procurement management. European Journal of Purchasing and Educational Management, 2(1), 57-70.
- 27. De Toni, A. Nassimbeni, G. (2020). Present-day access: A critical examination of operational behavior, supplier development, and performance. International Journal of Management Science, 28 (6), 631-651.
- 28. Forkmann, S., Henneberg, SC Journal of Signal Management, 51(3), 3-17.
- 29. Simpson, P. M., Siguaw, J. A. White, S.C. (2012). Supplier Performance Evaluation: A Review of Research Methods. Supply Management Journal, 38(4), 29-41

- 30. Tan, K.C., Kanan, V.R., Handfield, R.B. Ghosh, S. (2009). Resource management: An empirical investigation of its impact on performance. International Journal of Operations & Production Management, 19 (10), 1034-1052.
- 31. Tracey, M. Tan, C. L. (2011). A critical analysis of supplier selection and commitment, customer satisfaction, and firm performance. Supply Chain Management: An International Journal, 6(4), 174-88.
- 32. Kothari, C. (2018). Becoming a qualitative researcher: An introduction (Part 5). Boston: Pearson.
- 33. Yin, R. K. (2019). Case studies: Design and methods (4th ed.). Sage Publications