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Abstract

Let H" be a finite dimensional Hilbert space and &p, be a generalized derivation induced by the orthogonal
projections P and Q. In this study, we have shown that 6p, has a lower bound and is utmost equal to the sum
of norms of P and Q and also that §p is Hemitian and is bounded above by its numerical radius. Finally, the
research gave power bounds for numerical radii of the &p.

Introduction

Studies on the norm of inner derivations lead [7] to introduce the idea of S-universal operators and criteria
for the universality for subnormal operators i.e. an operator T € B(H) such that || 7 | T Il = 2d(T), for each
normideal Tin B(H) and d(T) =

infaec{ll T — A 1I}. Bonyo [7] established the relationship between &, §» and &r,» on

(H) where the operators T and P are S-universal. To be precise; supposing that T, P € (H) are S-universal,

1
then || 8rp | B(H) I= 2 { 6r| B(H) ) + 11 6p | B(H) |l and the norm of a generalized derivation
implemented by two S-universal operators is less than or equal to half the sum of the norms of inner
derivations implemented by each operator [7]. The norm of a derivation &r as a mapping of (H) onto itself is
given by inf || T — Al || [42]. Kadison, Lance and Ringrose [60] showed that if T is selfadjoint and 67 maps a
subalgebra of B(H) into B(H), then || 67l =inf{2 I T — A'll: A'€ 8’} where 6’ is the commutant of the
subalgebra 8 c B(H). McCarthy [42] used an example of a self-adjoint operator to show that the hypothesis
that ((8) c 0) is inessential, taking 8 to be the subalgebra of diagonal matrices with 8'= 6. Later on, Bonyo
[6] investigated the relationship between diameter of the numerical range of an operator T € (H) and norms
on inner derivations implemented by T on the norm ideal, and further considered the application of S-
universality to the relationship. The relationship in [6] determined using the fact that a generalized or inner
derivation is an operator and as such, one can calculate its numerical range as well as the norm whenever
applicable. Indeed, it was noted in [6] that for any operator T € (H) and norm ideal T in B(H), diam(W (T))
< |l 67| T Il where ‘diam’ is the diameter. Furthermore, it was shown that if T € (H) is S-universal,and T a
norm ideal in B(H), then diam(W (T)) <|l ér | T |l. In [61], Rosenblum determined the spectrum of an inner
derivation, 7= TP — PT. Kadison, Lance and Ringrose [60] investigated derivations §7 acting on a general
C*-algebra and which are induced by Hermitian operators. Stampfli [75] studied a derivation 67 acting on an
irreducible C*-algebra B(H) for all bounded linear operators on a Hilbert space H. The geometry of the
spectrum of a normal operator T was used in [60] to show that the norm of a derivation is given by || 67|l =
in{2 I T — A1I: A € C} using the geometry of the spectrum of normal operator T. Stampfli [75] raised the
guestion on the ability to compute the norm of a derivation on an arbitrary C*-algebra. Kaplansky [26] later
used the density theorem to prove that the extension of derivations of a C*- algebra to its weak-closure in
(H) [26] is achieved without increasing norm. Gajendragadkar [26] computed the norm of a derivation on a
von Neumann algebra. Specifically, it was shown that if ¢ is a von Neumann algebra of operators acting on a
separable Hilbert space H and T € ¢ and 67 is the derivation induced by T, then | 67 | @l =2inf{T—Z:Z
€ C} where C is the center of ¢ [19]. Given an algebra of bounded linear endomorphisms L(X) for a real or
complex vector space X, it was shown that for each element T € L(X), an operator 67 (A) =TA — AT is
defined on L(X) and | 87l £ 2 infII T + Al |I. Furthermore if X'is a complex Hilbert space then the norm
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equality holds [21]. Johnson [21] used a method which applies to a large class of uniformly convex spaces to
show that this norm formula does not apply for ## and L(0,1), 1 < p < oo, p # 2. For L1 spaces, the formula
was proved to be true in the real case but not in the complex case when the space has three or more
dimensions. The derivation constant (cA) has been studied for unital noncommutative C*-algebra A [4].
Archbold [4] studied K(M(A)) for the multiplier M(A) for a non-unital C*-algebra Aand obtained two
results; that K(M(A)) = 1if A = C*(G) for a number of locally compact group G and K(M(A)) = % if G is
(nonabelian) amenable group. Salah [67] showed that in both finite and infinite dimensional vector spaces,
the norm of a generalized derivation is given by || 84,1l =l Al + Il B |l for a pair A, B € B(H). Okelo in [51]
and [50], showed the necessary and sufficient conditions for a derivation 7 to be norm-attainable. Several
other results exists on the inequalities of derivations and commutators on C*-algebras. For instance Kittaneh
[31] used a polar decomposition T = UP of a complex matrix T and unitarily invariant norm ||]. ||| to prove
theinequality Il | UP — PU |2Il< || | T*T =TT+ |l <l UP + PU |lll UP — PU |I. Williams [79] proved that
if a commutator TX — XA = al is such that A is normal, then the norm relation [| [ — (TX = XT) I =l I |l
holds. Anderson [2], generalized Williams inequality and proved that || P — (TX — XT) Il = || P Il. Later, Salah
[67] proved that if T and P are normal operators, then [ — (TX — XP) = || I ||. The norms of derivations
implemented by S-universal operators have been shown to be less than or equal to half the sum of inner
derivations implemented by each operator in [7] and in particular was proved that, || 87

1 1
IS Sr_a Il +18p_a 1) g I 7-3p-2 1< (I

Sr-2ll + 1l 6p-all). Using unitaries and non-orthogonal projections, Bhatiah and Kittaneh [5] determined
max-norms and numerical radii inequalities for commutators. Some authors have used the concept of
classical numerical range to study different classes of matrices of operators. For instance, many alternative
formulations of (p, q)-numerical range Wp, q(4) = {Ep((UAU*)[Q]) for a unitary U where 1 <p<qg<n
for an n X n complex matrix X, with g X q leading principle submatrix X[q] and the pth elementary
symmetric functions of the eigen values of

[q] [38]. Chi-Kwong Li [37] extended the results of these formulations to the generalized cases, gave
alternative proofs for some of them like convexity and even derived a formula for (p, q)- numerical radius
of a derivation as 1,,4(T) = max{| # |: © €EWp, q(T)}. Mohammad [44] applied positive operators in the
proof of a similar result. Orthogonal projections being bounded operators, have extensive uses on
implementation of derivations and construction of underlying algebras of the derivations. Vasilevski [76]
studied the applications of -algebras constructed by orthogonal projections to aimark’s ilation theorem.
Spivack [74] used orthogonal projections to induce a derivation on von Neumann algebras. In [39] Matej
used mutually orthogonal projections acting on a C-algebra to prove that any local derivation is a
derivation.

Basic Definitions

Definition 2.2.0. An elementary operator T € B(H)js said to be norm-attainable if there exists a unit
vector 0 €H, such thatl Txp) I=1T I

Definition 2.2.1. A Hilbert-Schmidt operator T with orthonormal basis {ei i € I} has a Hilbert-Schmidt norm
I IIzis defined by I Tl = (Xier I Te; 1)

Definition 2.2.2. Let Hn denote the complex vector space of all n X n Hermitian matrices, endowed with
the inner product (4, B) = Tr(B*A), . Where Tr(.) is the trace on the positive matrices and B is the
adjoint of B, then:
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(i). the trace norm of , is defined by, II T 1= YizosiT,

(ii). the spectral norm of T, also is defined by, Il T Il 2 = max{siT}, where siT are the singular values of T,

1
i.e. the eigenvalues of | T | = (T"T)z,

Definition 2.2.3. A tensor product of H with K is a Hilbert space P, together with a bilinear mapping ¢ * H X
K — P, such that

(i). The set of all vectors (X, ¥)(X €H,y € K) forms a total subset of P, that is, its
closed linear spanis equal to P;

(ii). {@(x1, y1), @(X2, ¥2)) = (X1, X2)( y1, y2) for x1» X2 €H, y1, Y2 €K,
We refer to the pair (P, @) as the tensor product.

Remark 2.2.4. Let X,X', Y and Y ' be vector spaces over some fieldsand P: X +— X', and Q: Y — Y ' be
operators. Then there is a unique linear operator PO Q: X &

Y - X'® Y ' defined by
POQE®Y)=Px) ®Q), VXEX yeY.Thefunctionf:XxY->X &

Y ' defined by f(xy) = P(x) ® Q(¥) is bilinear and so by the universal property of tensor
products, there exist a unique operator P © Q for which the above equation holds. The map P ©OQ is
called the tensor product of P and Q.

Results and Discussion

Lemma 3.0.0. Given that P, Q, X € (H) are matricial operator on a finite dimensional separable Hilbert
space H"then PX — XQ is also matricial.

Proof.
Let [py], [gi] and [xij] denote the matrices of the operators P, Q and X respectively. Suppose that v;= vy, .
.., Un forms a basis of H» over a field K, then a simple computation shows that for (P-—Quvi=Puy;
—-Qw

= YiPyvj - X qyvj

= 2Py — qi)v;
which can also be written more compactly as Y; y;v; where y; is the finite difference p;; — qifor every i
and j. For a given A € then itis also clear that A[p;] = [Ap;]. We adopt the order v;T (instead of Tv;) for
the image of an arbitrary operator T which acts on H, for v; € H,. Thus, viTX = (viT)= Qjpyv; X =),
pij(v; X). But v;X = Yk xjxUx and so by substituting in the equation above yields v(PX) = }}; pii Ok xjxvk)
= Y'k(piyxji)vk so that [PX] = a;; where for each i and j, ai; = Yk pijxjr. Thus, we can also find 5 = )
Xjkqki SO that y'ij = aij — Bij = Ykpijxjk — i Xjkqki.

Theorem 3.0.1 Let § : B(H) — B(H) be a generalized derivation defined
by 8p(X) = PX — XQ for  orthogonal projections P and Q induced by g», then

I168e. 11 = {Z] pa 1732 ~ & g0 1Y and | SroX)II=TPIIXT—=TXINQI
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Proof.
Taking ||fx|| = 1 for afixed P, Q € Po(H) then 8po(fn) = pfn— fnq. Suppose that

prn and g» which induce P and Q respectively are bounded, then 8pofn = pfn— frq can take the form of a
diagonal matrix and Y.n(pnfrn— fnqn) is also bounded.

Now

Il 67,(fn) ll2= Il Yn(pnfn— fngn) li2
= X Dnfnl2= | X qufn 12
= Yol Dol 1l frll2= Xl gn |21l frlI?
= {Xnlpn |2 = Xl gn [PHZn I folI2 }

so that on taking the supremum over both sides of the inequality gives

sup{ll Pfn_ fnQ sl fn ll= 1} =l spo(f) I

= (X |pn |2}%— 2 1gn 12

Conversely the following relation hold

W Zn@nfn— fagn) I < {{Zn Ipnlz}%—{anqnlz}%}{E" I 17
Which implies that the following also hold.
U En@afa— frg) B < Cnlpa 1 fa 12 =2 g * 1/ 17}
= (Zn lpufull?=Zn lguf 1%}
< I Xn@ufn = fago)l}
So
supil Pf_ QI I fo Il =1} =I5, (fn) land for an arbitrary X€ B(H), then for

X= 20 Xnfn

1850 1= (8 1 o (S0 X, £ — (5 202 (3 W G 32
=IPIIXN—=0X10NQI

The following is a discussion of the norms of derivations in the context of tensor product of operators. We
show that indeed 6 P,Q is linear and bounded in this context.

Remark 3.0.2. Suppose that H = 2 is infinite dimensional complex Hilbert space, then £Z is unitarily
invariant to the Hilbert space tensor product £> ® £2 Let €

(H~, H1), Q € B(Hn, H,) and an arbitrary X : Hr— Hnfor Hn= H; @ H, =
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H11 © Hzz There is a unique linear operator PO X € B(H" @pn H1 ® H1), called the tensor product of
P and X satisfying (P © X)(x ® ¥) = P(x) & X(¥) and similarly X O Q)(y & x) = X(¥) & Q(x),

Moreover, there is a unique injective linear operator 8: B(H», H1)&® B(H", H;) - B
(H" ® Hy), B(H" ® Hz) which satisfy 0P @ X =X @ Q) = P OX —X Og.

Theorem 3.0.3 Let P € B(H», H1), @ € B(Hn, H,) and an arbitrary X: H»— for H»= Hy @ Hy = Hy1 ©H
22then 8py is linear and bounded.

Proof.
By the definition of derivations, the map §p (X)) =P Q@ X —-X Q@ Q:B(H1 Q
H11) - (H2 @ Hj) is defined by

POQu-1xiQy)—XOQCmn=1yi ® x:) =Xmn=1P(x:)) ® X(y)) —

Yrio1 (%) ® Q(y:) forallx e Hn. leta, BEFand Yri—ixi @ yi, Yi-1x' i Q@ y'i € H1 @ Hii.
Then

POX-XO @Y u=1xiQ@yi-BYr-1XiQ@Y)=POX-XOQ(aYru-=1xiQy:) +
( Zni=1xli®yli)

=POX-XOQ(ali=1xQ@y)+ POX-XO QB Lu=1x: ®Yi) =P O X(a
Yni=1xi Q yi)-X O Q(aYin=1xiQ yi)) + PO X(B Yni=1xiQ y'i )-

XOQBXxi ®Yyi:

i=1
=aYP(x) @ X(y) —a X X(x) ® Q(y) + B X P(x) ® X(¥')

i=1 i=1 i =1
n

—BEXX)QQY)aPOX X xi®yi)—aX
i=1 i=1

OQQEx®yi))+PPOX X xi ®y:i)—pX
=1
in i=1

OQ(=x: ®y:)

=aPOX-XOQNExi®y)+PPOX-XOQnIx: ®y")
i=1

Now for the case of boundedness,

ITPOX-XOQ(aXi=1xiQyi) Il =[Xm=1P(x) @ X(¥) — Lir=1 X (x1) @ Q(v:)|

S Ym—1 () @ X(vi) — X=X (x) @ Q(y:) i
SIS PO) @ X)) I+ 2iy X () ®
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Qi)

o0 <N X2 PCe) Xy I+ X5, X ) N
xa

<UERL P A Cep) X I Cyp)+I S, X
Cep) IEQ 1IN yill

<P IIX XTSI +1X 0 Q NETE Wiy
= PITXN+TXINQ D)X, I Iy Il
Letting (I P IHEX I+ X Q1) = M, thus M is the upper bound for PX _ XQ
Theorem 3.0.4. Let X € B(H) and orthogonal projections P, Q € B(H) thenll P ©
X=X OQQU=IPIIXN-=IXIQHN

Proof.

n n

) (x @y )I=1IP OX —X OQ() ®y)I
||P @X—X ®Q||=5up{ Z in }

i=1 i=1
<sup{ll Xie,(x; @y ) I=1 1P IX I (Xiz, 2 @ i)l
—NIXMQl I Chixi QviN MY x y; I}

=IPIIXN-=0NX1IQI
Conversely,

IPOX —X QQll=suplll P OXQiZ1x @yi) =X OQRL % ®@y;)
VYicixi @y € X Q@Yland Xitaxi ®yi) #0,

Then
. n( =X Yi)ll
P OX(Ejzlxi ®yl )_X OQ(Z{:] Xi ®y£ )"
— >
1POX-X0OQI=] A VY, ® 9 € X ®) ang
L@y )#=0=01PUIXMI—=0X1001Q NI
Thus |POX—X OQQIU=IP X=X e,

In the sequel, the research will consider inequalities for the norms of derivation discussed. The
inequalities considered will be on generalized derivations and the results generalize to the cases of inner
derivations.

Theorem 3.0.5. Suppose that P, Q € Po(H) are matricial operators, then

1
2_ (y2 2 2yz 2. y2
Il 5p,0(%) I1°= Qij=1Zij=1 |pixij — xijqj] Ya=py + Q=1 Zij=1 |pixij —
1

252 2 .
xyq;| Ya=jiopy T QJ= |gx3il)? on © Hs
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Proof. Suppose that P and Q are positive diagonal n X n matrices with eigenbases

pn and gn respectively for n= 1, with p,(1 = Pn ) = 0and g,(1 = 9n ) = 0. Given arbitrary € B(H), then,

[%1 ] 8] 0 lqol 0 g] X1 x12  Xx13
= P2 ’ = q» . _
_ 0 0 0 0 0 0 and an arbitrary X = [x21  x22  x23]
, With

X31 X32 X33

p1 = P22 0 then

p1x11 — x11p1 p1x12 — X12p2p1x13
PX — XP = [ p2x21 — x21p1 P2Xx22 — X22p2p2x23]
—x31p1 —x32p2 0
pixil — x11p1 0 0
= 0 D2X22 — X222 0] +
0 0 0
0 p1x12 — X12p2  pix13
[ p2x21 — x21p1 0 p2x23]
—X31p1 —X32p2 0

So that for a commutative B(H) then

0 pixi2 — x12p2P1X13
PX — XP = [sz21 — X21P1 0 p2x23]'
—Xx31p1 —X32p2 0
Now
pixil + x11p1 P1X12 + X12P2p 1 313
PX + XP = [ p2x21 + x21p1 p2x22+ X22P2  pyxys)
X31p1 X32p2 0
pixi1+ x11p1 0 0
= 0 pP2xXa2+ x22p2 0] +
0 0 0
0 pixi2+ x12p2 pixi3
[ 2x21 + x21p1 0 p2x23]
x31p1 X32p2 0
and
q1x11 — x11q1 q1x12 — x12q2q1x13
QX — XQ = [ qzx21 — x21q1 q2x22 — x22q2q2x23]
—x31q1 —x32q2 O
qix11 — x11q1 0 0
= 0 q2x22 — x22q2 0] +
0 0 0
0 qix12 — x12q2  q1x13
[ g2x21 — x21q1 0 q2x23]
—Xx31q1 —X32q2 0
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Similarly, for a commutative (H) then

0 q1x12 — x12q2
[ 2x21 — x21q1 0
—x31q1 —Xx32q2

Now

qixi11+ x11q1
QX + XQ = [ q2x21+ x21q1

QX —XQ =
q1x13

q2x23] .
0

qi1x12 + X12q2q1x13
q2x22 + x22q2q,x73)

x31q1 X322 0
qix11+ x11q1 0 0
= 0 q2X22 + X22q> 0] +
0 0 0
0 qix12+ x12q2  qi1x13
[ g2x21 + x21q1 0 q2x23]
x31q1 Xx32Q2 0

We obtain an operator

p1x11— x11q1
(PX — XQ) = [ p2x21 — x21q1
—q1x31

pix1l — x11q1

= 0
0
0 p1x12 — x12q2
[ 2x21 — x21q1 0
—q1x31 —q2x32

p1x12 — X1242 p1x13
p2x22—x22q2 0 ]

—q2x32 0
0 0
DP2X22 — X22q20] +
0 0
pix13
0 ]
0

Now on introducing the norm function to the equality results into the norm inequality;

plxil— x11q1  pixi2—x12q2  p1¥13 p1¥11 — X11G1 0 0
0 ] <
||[ p2x21 — x21q1  p2x22 — x22q2 [ 0 pP2x22— x22q2  O]||
—q1x31 —q2x32 0 0 0 0
0 pix12—x12q2 O
+ ||[ p2x21 — x21q1 0 o]l -
0 0 0
0 0 0
i o 0 0]]]
—qix31  —q2x32 0
Application of Hilbert-Schmidt norm to this, gives us the following
1 1
(X%=1 X 2y + (Ch=r T .
=140=1|pixij — xijqj| =) U=TEU=1 pixij — xijqj|2 )i =jie)) +
1
(sz=1 Iqjx3j|2)2
Lemma 3.0.6. Let P € Po(H) and X is compact, then Sj(PX) = 5j(XP) = X Il s;(P)
AJSTE 2021, http://journal.kyu.ac.ke/index.php/library Volume 2,2021 Page 8 of 15
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Proof.

sj(PX) = 5j{(XP) is immediate from the commutativity of the singular values and s,-(XP) =1 X1l 's;(P)
follows from the correspondence s,-(-) =1 and the inequality,

[1] PX (][I P IEX .

Theorem 3.0.7. Let (H) be a C+ _algebra, Po(H™) a commutative subalgebra of
B(H) and a map 8p,, such that §po° Po(H™) - B(H). Let 657 Mn(Po(H™)) -
M,(H™) be a linear map between matricial operator spaces M (Po(H™)) and
Mn(Hn). For n-tuples of pg, whereby 6»* My [Po(H™)] > Mn[B(H)], then

Sl(P, Q] = [6(P, D] Vp, Q€ Mu[Po(HM)]and [P] = [P1.P], [Q] =

[Qlﬂ QZ] Moreover, ” 81), "gll SP_Q ”CB holds.

Proof.
We apply diagonal matrices [Pland [Q]. Forn = 1, then by definition of &, §1 and & are coincidental [20]
hence, Il & Il = Il 61Il. We now proceed to give proofs

whenn= 2andwhenn= 3.For = 2, let [P].[Q] € M, [Po(Hn)],j, k = 1,2, then for 62: M,[Po(HM) > M
2[B(H)] we now have,

P 0

6:P,Q = 82100 P02 [Xox%) - Fox¥ (%1 ) D

p 0 PX—XQ,
=[1X—-XQ1 0 ]

(P1,01) 0 =[] ] and
0 (P2,Q2)

[[([PO1 PO2][X0X0] — [X0X0] [Q01 QO2])|| = ||[[P1X —0XQ1 P2X —0 XQ-]||

(P1,Q1) 0

=I[ [
0 (P2,Q2)

=[ X%=12%=1 I 6((Pj, Q) II2]%(Hilbert-

Schmidt norm)

(1 8((Py, Q1) 12+ (P2, Q) 122
= [l 8((P,, Q11) ]2

=1l ((PL,Q Il

= 11 81((P1,Q) I.
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Therefore,

821l = su{]|52(PQ) = [PQ] € M2[Po(HM |1}

> sufll 61((P1,Q) I} =161l
and hence || 821l =1l 111

PiX - XQ1 0 0
When n=3,83[ 00 P.X - XQ: 0
0 PsX = XQs |

P1,e)) 00=[06(P2020]

0 0 (P3,Q3)
which implies that
P X — XQ1 0 0 (P1,Q1) 0 0
163 [ 0 P2X — XQ: 0 =i o 8(p2.02) o il
0 0 P3X — XQs 0 0 (P3,Q3)

= [ 331 Soier 11 6((P; QOIPT? 1
= (1 8((P1, Q1) I? +11 8((P5, Q2) 17 +1 8((P3, Qs) %)z

=[ %} Y= | 5(cp, Qk)||2]%
=18([8(cp;, QD I
This implies that

I 83 I = syfll 53[5((P,-, Qul: [5((Pj, Q- M3[Po(H™)] I} = sup {||62[5((P,-, Q]+ [8(
(P, Q)] » M2[Po(H™)]1} =1 62 land therefore, Il 83 1 =1l 85 Il

Lastly, consider 8p+1 ¢ Mn+1[Po(H™)] 5 M,.1[(H)] defined by 8,41[6((P), Q)] =
[((P;, Q)] forallj, k= 1,...,n+ 1

We obtain,

I 81 [(PQY ] =1 [PQ) ] I

n+1 n+1

= [XJ3 S 16((p, g2
> [$fer Sher 16((p, g IPT:

=1 6.[8((P;, Q)] Il

Therefore, on taking supremum on both sides of the inequality above we get [15,+1 h=16nl, Application
of the property of complete boundedness of the norm of &, we further get Il 6 licg = sup{” 6y ll:n € N}
which implies thatll 8 llcg =11 8, iy n € N. Therefore, | § | = Il & ll;, this completes the claim.
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Example 3.0.8. Let §© M2(C) — M,(C) be a derivation defined by 8p9(X) = PX — XQ. Let an operator P,
be defined by (e;) = e; on a finite dimensional Hilbert space H, for an orthonormal basis e;, j = 1,2. ...

We can then set the matrix for an arbitrary operator X and that of P as,
X = [aa1121 aa1222], P =[e0100].

It is clear by simple calculation that
PX — XP = [1X11— x—21x1161 0 €1 X12 ]
p1 0

Now suppose that H has a unique direct decomposition given by H = ranP € kerP and e; is an identity in
the range of P, then PX — XP becomes PX — XP =

[ O e1*12]. We can find a unitary U = leq: —OEz]SUCh that

—X21€1 0

[—x021e1 el Q%12 ] = (UX - XU)

= Z(UX —XU")

By triangle inequality,

1 1 1 1

5" (UXx —XU) IISEII (UX + XU) IISEII ux i +§II XUl=I1XUIl=1XI
Now considering another operator Q similar to P, we can get another orthonormal

basis fj, j = 1,2... such that Q is defined by Q = [f/- 0].
0 O

Let also ! 1

1
IX = {Znlan?}2 =1, IPX U= (X | "2 =PNQXI={Y|f|2.=
Q and soll PX — XQ Il PX + XQ I <l PX Il +1l XQ I,
Lemma 3.0.9. Suppose that for an arbitrary € B(H) and P1X, P2X, XQ1, XQ2 € C2then, n»
—-1y2 P 2
Yi=1 WP Ip=1 Xi=1 pix, IP<ll, PXilb, for 0 <P = ® and the reverse inequalities hold for

1<p<oo

Proof. If 1and az, are nonnegative real eigenvalues for P1 and P, then
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ne i=1 a; = Flzra)P = Eni=1 a®. The inequalities follow, respectively, from the concavity of the
function f(&) =t»,t € [0,0)for0 < p =1 and the convexity of the function (t) = tr, t € [0, ®)for
1< p< o

Proposition 3.1.0. Let P~ P1, P2, Q= Q1, Q2 € (andan arbitrary X = X1, X2 €
2 P 2 P
B(H) for some p > 0.Then Zij=1 lpx, _px,Ipt Zij=1lx,0,_ x,0,lp P *+

p—2 Pz
N1 1Xe = X 052 (D=1 W puy, — x,0,00+ Do'xZhi=1 D xigr = Xi lp,
P2
Dy Yiio1 Il X — P; X, I5) = (l EEJ’:l(PiXi— XjQi)llng 2?21(XiQi —X) 15+
I ¥ (X —piXi)IIg) for0 < p <2

Proof.

We define a constant Dp by Dp= Y"1 (P:X;) where
Yoi=1 (Ple) = {10,, ((PP{{XX;‘;‘)):F: 00;

and Dp=Y2-1m(X:Q;)) where

(X:i0) = {01, ((xx:90i))*=00
We prove the case for 0 < p < 2 and infer the result onto the other cases. We have
S2i=1 Il PiXi - X,0; e + Zii=1 1 xi0i - x;0,1p + Eij=a I Xi = Xj I+
(1 22r( Xi— X@)lp HINEEa( x,0, - x) I+ Ziza(x, - pxp)ln) =
2(T1<icj<z | PiXi— Pix; ot Zacicj<z I 5,0 - xj0, It Ticicj<z I Xi —

x, 1) + (1 2 pxi— xi0) 1o+ Ziza( xi0, = X0 o+ Zeaa (Xi = pxpylin) =

2 "p/Z p/2 +

L 2
2(Vi<igj<2 Il | PiXi— Pixj| oz T Za<i<i<e 1) xigi — x;051” T2

/2 2
Sacicia 11X = X2 15720 + (N Sk, iy 002 Wo/atl 1550 x00
2 /2 2 2 ¢ p/2 L.
x)l* Wpyz H Zimal Xi = p oy I72) = IZ<i<i<z) pox,— pxj2 +

yi<i<j<2| XiQi — X;Q)1? + X4=1 |( PiXi— XiQo) |||/ /22 + |[Xa<i<i<2| XiQi— X;Q;]> +

Ya<i<j<2|Xi— Xj|2 + Yi2=1|(XiQi — X)|?[|Pp/ /22 + |[Xa<i<j<2|Xi— Xj|? +

P = 11 5%
Yi<i<j<2| PiXi— PjXj|2 + Y2i=1| Xi — PiXi| "p/2 Y=Y PiXi— XjQjl|2||pp//22 +
p

+ |23, X — Tl g2
12% =1 Xi PiXjl2llpp//22 = Dix X

p/2

w0 NP P
||ZZL,=1|XLQL p/2 -XQ ,]=1|| Pi Xi—
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2 5—1 2 2 p/2 E—l

+ .
XjQjlzllpp//2 * Dxq-x X i=1||| XiQ: — Xjl llp/2 Dx-Px¥ 2 ij=1|||Xi —

PijIZIIpp//zz =

4 2
Wpe reZim + D o2t

Dprx
Proposition 3.1.1. Let P1,3, Q1,Q2 € Cp for some p > 0. Then Y2, —1||PiXi —
PiXjllop + ¥2i=1]|1XiQi — XjQjllpp = 2.2p-232ij=1||PiXi — XjQjllpp — 2|| X 2i=1(PiXi —

p
XiQ)|lpfor 0 <p < 2.

Proof.

p—2 p—2 p—2

2 2 _ 2 2 2 2
We set ¢ —x2ij=1 = 2Dq" Xi=1|X:iQi||pp, Dx —P2ii=1||Xi — PjXi||pp =

p—2

T2 w2
2Dp* Xi=1||PiXi||pp.

p—2
pp 0 <V2._ + 32
Now _ELJ_1 [|PiXi — Zt’j_l ‘PX —-XQ El PiXjl||p
XjQjllp=1l|P:X: —
p-2 p-2
ppP — 232 (i ¥?
_ 2z 2
X5Qillp Z(D 20 xq = XiQilp* Prx

P +( i=1
(PiXi— XiQi)p +

L + |27 =¥i + 37 =1
j=1||PiXi — PjXj||p|| XiQi — XjQj||p —

P 2 p 2
pp 2 2
XiQyi) j=1||PiXi —
2 —_— 14
X;0jllp (PiXi — XiQi)p " SiXiPilly Px =1 PiXi|lp) +

p-2 p—2

Zi2=1 — 2 w2
( IXiQillop= 2D ixa =1 * E2XiQillpp) Pp0 Bt j=1||PiXi — X;Qjllop ~ | Zi=12

IA

= Dhilags -, I <o,
p

XiQi) j=1|l[|PiXi — XjQj|  »/ =1|PiXi — XiQi|  p/

p

[ X:Q: —

j=1 P; Xj

(PiXi—

(PiXi —
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Since 2Dp is greater than or equal to 1, we deduce from lemma 4.20 that

Y2 -2D ¥ < Ay - ¥ <0 p 272
p 2
I PiXi||p px  i=1||PiXi||p =1PiXi||p =1||XiPi||p

p—2

pp 2 < 2D % y?
Similarly, we have || " ! 2 XiQillppx  =1|X:Qi|p. It therefore implies that

Z:g,j=1 + Z%j=1 > ZDEXQ Y7
p —2ppp
|PiXi — PiXjl|p 1XiQi — XjQjllp j=1|1XiQi — X;jQjllp —

S ) %z 2207 § - 2|z, 2

(PiXi_ ” XiQ)p =1||PiXi—

XiQjllp  (PiXi— XiQi)|lp DPx-xq.

Conclusion

In this paper, the study has shown that the norm of a derivation, induced by orthogonal projections via
tensor product is linear, bounded and continuous. Furthermore, there is inequalities of such a derivation
induced by n-tupled orthogonal projections.
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