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Abstract 

Let 𝐻𝑛 be a finite dimensional Hilbert space and 𝛿𝑃, be a generalized derivation induced by the orthogonal 

projections 𝑃 and 𝑄. In this study, we have shown that 𝛿𝑃, has a lower bound and is utmost equal to the sum 

of norms of 𝑃 and 𝑄 and also that 𝛿𝑃,𝑄 is Hemitian and is bounded above by its numerical radius. Finally, the 
research gave power bounds for numerical radii of the 𝛿𝑃,.  

  

Introduction  
Studies on the norm of inner derivations lead [7] to introduce the idea of S-universal operators and criteria 
for the universality for subnormal operators i.e. an operator 𝑇 ∈ 𝐵(𝐻) such that ∥ 𝛿𝑇 | 𝜏 ∥ = 2𝑑(𝑇), for each 

norm ideal 𝜏 in 𝐵(𝐻) and 𝑑(𝑇) = 

 𝑖𝑛𝑓𝜆∈𝐶{∥ 𝑇 − 𝜆 ∥}. Bonyo [7] established the relationship between 𝛿 , 𝛿𝑃 and 𝛿𝑇,𝑃 on  

(𝐻) where the operators 𝑇 and P are 𝑆-universal. To be precise; supposing that 𝑇, 𝑃 ∈ (𝐻) are 𝑆-universal, 

then ∥ 𝛿𝑇,𝑃 | 𝐵  𝛿𝑇| 𝐵(𝐻) ∥) + ∥ 𝛿𝑃 | 𝐵(𝐻) ∥  and the norm of a generalized derivation 

implemented by two 𝑆-universal operators is less than or equal to half the sum of the norms of inner 

derivations implemented by each operator [7]. The norm of a derivation 𝛿𝑇 as a mapping of (𝐻) onto itself is 

given by 𝑖𝑛𝑓 ∥ 𝑇 − 𝜆𝐼 ∥ [42]. Kadison, Lance and Ringrose [60] showed that if 𝑇 is selfadjoint and 𝛿𝑇 maps a 
subalgebra of 𝐵(𝐻) into 𝐵(𝐻), then ∥ 𝛿𝑇 ∥ = 𝑖𝑛𝑓{2 ∥ 𝑇 − 𝐴′ ∥∶ 𝐴′ ∈ 𝜃′} where 𝜃′ is the commutant of the 
subalgebra 𝜃 ⊂ 𝐵(𝐻). McCarthy [42] used an example of a self-adjoint operator to show that the hypothesis 

that ((𝜃) ⊂ 𝜃) is inessential, taking 𝜃 to be the subalgebra of diagonal matrices with 𝜃′ = 𝜃. Later on, Bonyo 
[6] investigated the relationship between diameter of the numerical range of an operator 𝑇 ∈ (𝐻) and norms 

on inner derivations implemented by 𝑇 on the norm ideal, and further considered the application of 𝑆-

universality to the relationship. The relationship in [6] determined using the fact that a generalized or inner 

derivation is an operator and as such, one can calculate its numerical range as well as the norm whenever 
applicable. Indeed, it was noted in [6] that for any operator 𝑇 ∈ (𝐻) and norm ideal 𝜏 in 𝐵(𝐻), 𝑑𝑖𝑎𝑚(𝑊(𝑇)) 

≤ ∥ 𝛿𝑇| 𝜏 ∥ where ′𝑑𝑖𝑎𝑚′ is the diameter. Furthermore, it was shown that if 𝑇 ∈ (𝐻) is 𝑆-universal, and 𝜏 a 

norm ideal in 𝐵(𝐻), then 𝑑𝑖𝑎𝑚(𝑊(𝑇)) ≤∥ 𝛿𝑇 | 𝜏 ∥.  In [61], Rosenblum determined the spectrum of an inner 

derivation, 𝛿𝑇 = 𝑇𝑃 − 𝑃𝑇. Kadison, Lance and Ringrose [60] investigated derivations 𝛿𝑇 acting on a general 

𝐶∗-algebra and which are induced by Hermitian operators. Stampfli [75] studied a derivation 𝛿𝑇 acting on an 
irreducible 𝐶∗-algebra B(H) for all bounded linear operators on a Hilbert space 𝐻. The geometry of the 
spectrum of a normal operator 𝑇 was used in [60] to show that the norm of a derivation is given by ∥ 𝛿𝑇 ∥ = 
𝑖𝑛{2 ∥ 𝑇 − 𝜆 ∥∶ 𝜆 ∈ 𝐶} using the geometry of the spectrum of normal operator 𝑇. Stampfli [75] raised the 

question on the ability to compute the norm of a derivation on an arbitrary 𝐶∗-algebra. Kaplansky [26] later 
used the density theorem to prove that the extension of derivations of a 𝐶∗- algebra to its weak-closure in 

(𝐻) [26] is achieved without increasing norm. Gajendragadkar [26] computed the norm of a derivation on a 

von Neumann algebra. Specifically, it was shown that if 𝜑 is a von Neumann algebra of operators acting on a 
separable Hilbert space 𝐻 and 𝑇 ∈ 𝜑 and 𝛿𝑇  is the derivation induced by 𝑇, then ∥ 𝛿𝑇  | 𝜑 ∥ = 2 𝑖𝑛𝑓{𝑇 − 𝑍 ∶ 𝑍 
∈ 𝐶} where 𝐶 is the center of 𝜑 [19]. Given an algebra of bounded linear endomorphisms ℒ(𝒳) for a real or 

complex vector space 𝒳, it was shown that for each element 𝑇 ∈ 𝐿(𝒳), an operator 𝛿𝑇 (𝐴) = 𝑇𝐴 − 𝐴𝑇 is 
defined on ℒ(𝒳) and ∥ 𝛿𝑇 ∥ ≤ 2 𝑖𝑛𝑓𝜆 ∥ 𝑇 + 𝜆𝐼 ∥. Furthermore if 𝒳is a complex Hilbert space then the norm 
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equality holds [21]. Johnson [21] used a method which applies to a large class of uniformly convex spaces to 

show that this norm formula does not apply for ℓ𝑃 and 𝐿(0,1),   1 < 𝑝 < ∞, 𝑝 ≠ 2. For 𝐿1 spaces, the formula 
was proved to be true in the real case but not in the complex case when the space has three or more 
dimensions. The derivation constant (𝒜) has been studied for unital noncommutative 𝐶∗-algebra 𝒜 [4]. 

Archbold [4] studied 𝐾(𝑀(𝒜)) for the multiplier 𝑀(𝒜) for a non-unital 𝐶∗-algebra 𝒜and obtained two 

results; that 𝐾(𝑀(𝒜)) = 1 if  𝒜 = 𝐶∗(𝐺) for a number of locally compact group 𝐺 and 𝐾(𝑀(𝒜)) =  if 𝐺 is 

(nonabelian) amenable group. Salah [67] showed that in both finite and infinite dimensional vector spaces, 

the norm of a generalized derivation is given by ∥ 𝛿𝐴, ∥ = ∥ 𝐴 ∥ + ∥ 𝐵 ∥ for a pair 𝐴, 𝐵 ∈ 𝐵(𝐻). Okelo in [51] 
and [50], showed the necessary and sufficient conditions for a derivation 𝛿𝑇 to be norm-attainable. Several 
other results exists on the inequalities of derivations and commutators on 𝐶∗-algebras. For instance Kittaneh 

[31] used a polar decomposition 𝑇 = 𝑈𝑃 of a complex matrix 𝑇 and unitarily invariant norm |||. ||| to prove 
the inequality ∥∥ | 𝑈𝑃 − 𝑃𝑈 |2 ∥∥ ≤ ∥  | 𝑇∗𝑇 − 𝑇𝑇∗ | ∥ ≤ ∥ 𝑈𝑃 + 𝑃𝑈 ∥∥ 𝑈𝑃 − 𝑃𝑈 ∥. Williams [79] proved that 

if a commutator 𝑇𝑋 − 𝑋𝐴 = 𝛼𝐼 is such that 𝐴 is normal, then the norm relation ∥ 𝐼 − (𝑇𝑋 − 𝑋𝑇) ∥ ≥ ∥ 𝐼 ∥ 
holds.  Anderson [2], generalized Williams inequality and proved that ∥ 𝑃 − (𝑇𝑋 − 𝑋𝑇) ∥ ≥ ∥ 𝑃 ∥. Later, Salah 

[67] proved that if 𝑇 and 𝑃 are normal operators, then 𝐼 − (𝑇𝑋 − 𝑋𝑃) ≥ ∥ 𝐼 ∥. The norms of derivations 
implemented by 𝑆-universal operators have been shown to be less than or equal to half the sum of inner 
derivations implemented by each operator in [7] and in particular was proved that, ∥ 𝛿𝑇,𝑃 

 and  

𝛿𝑇−𝜆 ∥ + ∥ 𝛿𝑃−𝜆 ∥). Using unitaries and non-orthogonal projections, Bhatiah and Kittaneh [5] determined 
max-norms and numerical radii inequalities for commutators. Some authors have used the concept of 

classical numerical range to study different classes of matrices of operators. For instance, many alternative 

formulations of (𝑝, 𝑞)-numerical range 𝑊𝑝, 𝑞(𝐴) = {𝐸𝑝((𝑈𝐴𝑈∗)[𝑄]) for a unitary 𝑈 where 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 

for an 𝑛 × 𝑛 complex matrix 𝑋, with 𝑞 × 𝑞 leading principle submatrix 𝑋[𝑞] and the 𝑝𝑡ℎ elementary 
symmetric functions of the eigen values of  

[𝑞] [38]. Chi-Kwong Li [37] extended the results of these formulations to the generalized cases, gave 

alternative proofs for some of them like convexity and even derived a formula for (𝑝, 𝑞)- numerical radius 
of a derivation as 𝑟𝑝,𝑞(𝑇) = 𝑚𝑎𝑥  𝑊𝑝, 𝑞(𝑇)}. Mohammad [44] applied positive operators in the 

proof of a similar result. Orthogonal projections being bounded operators, have extensive uses on 
implementation of derivations and construction of underlying algebras of the derivations. Vasilevski [76] 

studied the applications of  -algebras constructed by orthogonal projections to aimark’s ilation theorem. 
Spivack [74] used orthogonal projections to induce a derivation on von Neumann algebras. In [39] Matej 
used mutually orthogonal projections acting on a 𝐶-algebra to prove that any local derivation is a 
derivation.  

Basic Definitions  
  
Definition 2.2.0. An elementary operator  is said to be norm-attainable if there exists a unit 
vector   𝐻, such that .  

  

Definition 2.2.1. A Hilbert-Schmidt operator T with orthonormal basis  has a Hilbert-Schmidt norm 

 is defined by   

  
Definition 2.2.2. Let 𝐻𝑛 denote the complex vector space of all 𝑛 × 𝑛 Hermitian matrices, endowed with 

the inner product ⟨𝐴, 𝐵⟩ , where Tr(.) is the trace on the positive matrices and 𝐵 is the 
adjoint of 𝐵, then:  
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 (i). the trace norm of  , is defined by, .                                                      

(ii). the spectral norm of 𝑇, also is defined by,  𝑚𝑎𝑥 , where 𝑠𝑖𝑇   are the singular values of 𝑇, 

i.e. the eigenvalues of | 𝑇 | .  

Definition 2.2.3. A tensor product of H with K is a Hilbert space P, together with a bilinear mapping  H × 
K → P, such that  

(i). The set of all vectors  H, y  forms a total subset of P, that is, its  

closed linear span is equal to P ;                                                                                                                  

(ii). ⟨φ(x1, y1), φ(x2, y2)⟩ = ⟨x1, x2⟩⟨ y1, y2⟩ for x  H , y  .  

We refer to the pair (P, φ) as the tensor product.  

Remark 2.2.4. Let X,X′, Y and Y ′ be vector spaces over some fields and P  X ⟼ X′, and Q  Y ⟼ Y ′ be 
operators. Then there is a unique linear operator P  

Y → X′  Y ′ defined by  

  X, y  Y . The function f  X × Y → X′  

Y ′ defined by                     f  is bilinear and so by the universal property of tensor 

products, there exist a unique operator P  Q for which the above equation holds. The map P Q is 
called the tensor product of P and Q.  

  

 

Results and Discussion  
  
Lemma 3.0.0. Given that 𝑃, 𝑄, 𝑋 ∈ (𝐻) are matricial operator on a finite dimensional separable Hilbert 

space  𝐻𝑛 then 𝑃𝑋 − 𝑋𝑄 is also matricial.  

Proof.                                                                                                                                                                

Let [𝑝𝑖𝑗], [𝑞𝑖𝑗] and [𝑥𝑖𝑗] denote the matrices of the operators 𝑃, 𝑄 and 𝑋 respectively. Suppose that 𝑣𝑖 = 𝑣1, . 
. . , 𝑣𝑛 forms a basis of 𝐻𝑛  over a field 𝕂, then a simple computation shows that for             (𝑃 − 𝑄)𝑣𝑖 = 𝑃 𝑣𝑖 

− 𝑄 𝑣𝑖      

                   = ∑𝑗 𝑝𝑖𝑗𝑣𝑗 – ∑𝑗 𝑞𝑖𝑗𝑣𝑗     

                  = ∑𝑗(𝑝𝑖𝑗 − 𝑞𝑖𝑗)𝑣𝑗                                                                                                                           

which can also be written more compactly as ∑𝑗 𝛾𝑖𝑗𝑣𝑗 where 𝛾𝑖𝑗 is the finite difference 𝑝𝑖𝑗 − 𝑞𝑖𝑗for every 𝑖 

and 𝑗. For a given 𝜆 ∈   then it is also clear that 𝜆[𝑝𝑖𝑗] = [𝜆𝑝𝑖𝑗]. We adopt the order 𝑣𝑖𝑇 (instead of 𝑇𝑣𝑖) for 
the image of an arbitrary operator 𝑇 which acts on 𝐻𝑛 for 𝑣𝑖 ∈ 𝐻𝑛. Thus, 𝑣𝑖𝑇𝑋 = (𝑣𝑖𝑇)=  (∑𝑗 𝑝𝑖𝑗𝑣𝑗 𝑋 = ∑𝑗 

𝑝𝑖𝑗(𝑣𝑗 𝑋). But 𝑣𝑗𝑋 = ∑𝑘 𝑥𝑗𝑘𝑣𝑘 and so by substituting in the equation above yields 𝑣(𝑃𝑋) = ∑𝑗 𝑝𝑖𝑗(∑𝑘 𝑥𝑗𝑘𝑣𝑘) 
= ∑𝑘(𝑝𝑖𝑗𝑥𝑗𝑘)𝑣𝑘 so that [𝑃𝑋] = 𝛼𝑖𝑗 where for each 𝑖 and 𝑗, 𝛼𝑖𝑗 = ∑𝑘 𝑝𝑖𝑗𝑥𝑗𝑘. Thus, we can also find 𝛽𝑖𝑗 = ∑𝑖 
𝑥𝑗𝑘𝑞𝑘𝑖 so that 𝛾′𝑖𝑗 = 𝛼𝑖𝑗 − 𝛽𝑖𝑗 = ∑𝑘𝑝𝑖𝑗𝑥𝑗𝑘 − ∑𝑖 𝑥𝑗𝑘𝑞𝑘𝑖.   

Theorem 3.0.1  Let 𝛿 ∶ 𝐵(𝐻) → 𝐵(𝐻) be a generalized derivation defined  

𝑏𝑦 𝛿𝑃,(𝑋) = 𝑃𝑋 − 𝑋𝑄 for       orthogonal projections 𝑃 and 𝑄 induced by  𝑞𝑛, then  

∥ 𝛿𝑃, ∥ = {∑| 𝑝𝑛 |2} | 𝑞𝑛 |    and ∥ 𝛿𝑃,𝑄(𝑋) ∥ = ∥ 𝑃 ∥∥ 𝑋 ∥ − ∥ 𝑋 ∥∥ 𝑄 ∥   
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Proof.                                                                                                                                                               

Taking  ‖𝑓𝑛‖ = 1 for a fixed 𝑃, 𝑄 ∈ 𝑃0(𝐻) then 𝛿𝑃,𝑄(𝑓𝑛) = 𝑝𝑓𝑛 − 𝑓𝑛𝑞. Suppose that  

𝑝𝑛 and 𝑞𝑛 which induce 𝑃 and 𝑄 respectively are bounded, then  𝛿𝑃,𝑄𝑓𝑛 = 𝑝𝑓𝑛 − 𝑓𝑛𝑞 can take the form of a  
diagonal matrix and ∑𝑛(𝑝𝑛𝑓𝑛 − 𝑓𝑛𝑞𝑛) is also bounded.  

Now  

∥ 𝛿𝑃,(𝑓𝑛) ∥2= ∥ ∑𝑛(𝑝𝑛𝑓𝑛 − 𝑓𝑛𝑞𝑛) ∥2      

                     ≥ ∥ ∑𝑛 𝑝𝑛𝑓𝑛 ∥2− ∥ ∑𝑛 𝑞𝑛𝑓𝑛 ∥2   

                     = ∑𝑛| 𝑝𝑛|2 ∥ 𝑓𝑛 ∥2− ∑𝑛| 𝑞𝑛 |2 ∥ 𝑓𝑛 ∥2   

                    = {∑𝑛|𝑝𝑛 |2 − ∑𝑛| 𝑞𝑛 |2}{∑𝑛 ∥ 𝑓𝑛 ∥2 }  

so that on taking the supremum over both sides of the inequality gives   

  𝑃𝑓𝑛  𝑓𝑛𝑄  𝛿𝑃,𝑄    

                                                     𝑛 |𝑝𝑛 | 𝑛 |𝑞𝑛 |2} .   

Conversely the following relation hold  

 (𝑝𝑛𝑓𝑛 − 𝑓𝑛𝑞𝑛) 𝑛 |𝑝𝑛 | 𝑛 | 𝑞𝑛 |      

Which implies that the following also hold.  

   (𝑝𝑛𝑓𝑛 − 𝑓𝑛𝑞𝑛) 𝑛 |𝑝𝑛 | 𝑛 |𝑞𝑛 |   

                                          𝑝𝑛𝑓𝑛  𝑞𝑛𝑓𝑛                                                                            

                               (𝑝𝑛𝑓𝑛 − 𝑓𝑛𝑞𝑛)   

So  

𝑠𝑢𝑝  𝑃𝑓𝑛  𝑓𝑛𝑄  𝛿𝑃,  and for an arbitrary 𝑋 , then for  

𝑋 𝑛 𝑋𝑛𝑓𝑛   

 𝛿𝑃,𝑄  𝑋𝑛𝑓𝑛  𝑋𝑛𝑓𝑛                                              

     

The following is a discussion of the norms of derivations in the context of tensor product of operators. We 
show that indeed δ P,Q is linear and bounded in this context.  

Remark 3.0.2.  Suppose that 𝐻 = ℓ2 is infinite dimensional complex Hilbert space, then  is unitarily 

invariant to the Hilbert space tensor product   Let   

(𝐻𝑛, 𝐻1) (𝐻𝑛, 𝐻2) and an arbitrary 𝑋 𝑛 → 𝐻𝑛 for 𝐻𝑛  
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𝐻 . There is a unique linear operator 𝑃 𝐻𝑛, 𝐻 , called the tensor product of 

𝑃 and 𝑋 satisfying  and similarly . 
Moreover, there is a unique injective linear operator 𝜃 (𝐻𝑛, 𝐻1) (𝐻𝑛, 𝐻2) → 𝐵

 which satisfy 𝜃 𝑄.   

Theorem 3.0.3 Let 𝑃 (𝐻𝑛, 𝐻1) (𝐻𝑛, 𝐻2) and an arbitrary 𝑋  𝐻𝑛 →  for 𝐻𝑛 𝐻
 then 𝛿𝑃,𝑄 is linear and bounded.  

Proof.                                                                                                                                                                

By the definition of derivations, the map 𝛿𝑃,(𝑋) = 𝑃 ⊗ 𝑋 − 𝑋 ⊗ 𝑄 ∶ 𝐵(𝐻1 ⊗ 

 𝐻11) → (𝐻2 ⊗ 𝐻22) is defined by  

 𝑃 ⊙ (∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 ) − 𝑋 ⊙ 𝑄(∑𝑛𝑖=1 𝑦𝑖 ⊗ 𝑥𝑖 ) = ∑𝑛𝑖=1 𝑃(𝑥𝑖) ⊗ 𝑋(𝑦𝑖) − 

∑𝑛𝑖=1 (𝑥𝑖) ⊗ 𝑄(𝑦𝑖)  for all 𝑥 ∈ 𝐻𝑛. Let 𝛼, 𝛽 ∈ 𝔽 and  ∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 , ∑𝑛𝑖=1 𝑥′𝑖 ⊗ 𝑦′𝑖 ∈ 𝐻1 ⊗ 𝐻11.                                           

Then  

 𝑃 ⊙ 𝑋 – 𝑋 ⊙ (𝛼 ∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 – 𝛽 ∑𝑖𝑛=1 𝑥′𝑖 ⊗ 𝑦′𝑖) = (𝑃 ⊙ 𝑋 − 𝑋 ⊙ 𝑄)(𝛼 ∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 ) +  

                                                                                                   (  ∑𝑛𝑖=1 𝑥′𝑖 ⊗ 𝑦′𝑖 )  

= (𝑃 ⊙ 𝑋 – 𝑋 ⊙ 𝑄)(𝛼 ∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 ) +  (𝑃 ⊙ 𝑋 – 𝑋 ⊙ 𝑄)(𝛽 ∑𝑛𝑖=1 𝑥′𝑖  ⊗ 𝑦′𝑖 )                                 = 𝑃 ⊙ 𝑋(𝛼 
∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 )– 𝑋 ⊙ 𝑄(𝛼 ∑𝑖𝑛=1 𝑥𝑖 ⊗ 𝑦𝑖) + 𝑃 ⊙ 𝑋(𝛽 ∑𝑛𝑖=1 𝑥′𝑖 ⊗ 𝑦′𝑖 )–  
𝑛 

𝑋 ⊙ 𝑄(𝛽 ∑ 𝑥′𝑖  ⊗ 𝑦′𝑖   
𝑖=1 

 𝑛 𝑛 𝑛 

= 𝛼 ∑ 𝑃(𝑥𝑖) ⊗ 𝑋(𝑦𝑖) − 𝛼 ∑ 𝑋(𝑥𝑖) ⊗ 𝑄(𝑦𝑖) + 𝛽 ∑ 𝑃(𝑥′𝑖) ⊗ 𝑋(𝑦′𝑖) 

 𝑖=1 𝑖=1 𝑖 
𝑛 

− 𝛽 ∑ 𝑋(𝑥′𝑖) ⊗ 𝑄(𝑦′𝑖) 𝛼𝑃 ⊙ 𝑋 (∑ 𝑥𝑖 ⊗ 𝑦𝑖 ) − 𝛼𝑋 

 𝑖=1 𝑖=1 
 𝑛 𝑛 

⊙ 𝑄 (∑ 𝑥𝑖 ⊗ 𝑦𝑖 ) + 𝛽𝑃 ⊙ 𝑋 (∑ 𝑥′
𝑖  ⊗ 𝑦′

𝑖 ) − 𝛽𝑋 

 𝑖  𝑖=1 

⊙ 𝑄 ( 𝑥′𝑖  ⊗ 𝑦′𝑖 )  

 𝑛 𝑛 

= 𝛼(𝑃 ⊙ 𝑋 − 𝑋 ⊙ 𝑄)(∑ 𝑥𝑖 ⊗ 𝑦𝑖 ) + 𝛽(𝑃 ⊙ 𝑋 − 𝑋 ⊙ 𝑄)(𝑛 ∑ 𝑥′𝑖  ⊗ 𝑦′𝑖 )  
 𝑖=1 𝑖=1 

Now for the case of boundedness,  

 ∥ (𝑃 ⊙ 𝑋 – 𝑋 ⊙ 𝑄)(𝛼 ∑𝑛𝑖=1 𝑥𝑖 ⊗ 𝑦𝑖 ) ∥ = |∑𝑛𝑖=1 𝑃(𝑥𝑖) ⊗ 𝑋(𝑦𝑖) − ∑𝑖𝑛=1 𝑋(𝑥𝑖) ⊗ 𝑄(𝑦𝑖 )|  

                                                                    ≤ ∥ ∑𝑛𝑖=1 (𝑥𝑖) ⊗ 𝑋(𝑦𝑖) − ∑𝑛𝑖=1 𝑋(𝑥𝑖) ⊗ 𝑄(𝑦𝑖 ) ∥   
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𝑄   

                                                                     
𝑋   

                                                                     
                                                                                   𝑦𝑖   

                                                                      𝑥𝑖𝑦𝑖  𝑥𝑖𝑦𝑖   

                                                                     .  

Letting  𝑀, thus 𝑀 is the upper bound for 𝑃𝑋  𝑋𝑄  

Theorem 3.0.4. Let 𝑋  and orthogonal projections 𝑃, 𝑄  then  

𝑋 .  

Proof.  

 𝑛 𝑛 

 𝑠𝑢𝑝 𝑥𝑖   

 𝑖  𝑖  

                                                 

                                                                           

                                                 

Conversely,  

 𝑠𝑢𝑝  

 and .  

Then 

𝑛𝑖  𝑥𝑖 } and

.  

Thus |𝑃 .   

In the sequel, the research  will consider inequalities for the norms of derivation discussed. The 
inequalities considered will be on generalized derivations and the results generalize to the cases of inner 
derivations.  

Theorem 3.0.5. Suppose that 𝑃, 𝑄  are matricial operators, then  

 𝛿𝑃,𝑄  |𝑝𝑖𝑥𝑖𝑗  𝑥𝑖𝑗𝑞𝑗|  |𝑝𝑖𝑥𝑖𝑗 − 

𝑥𝑖𝑗𝑞𝑗|  |𝑞𝑗𝑥    
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Proof. Suppose that 𝑃 and 𝑄 are positive diagonal 𝑛 × 𝑛 matrices with eigenbases  

𝑝𝑛 and qn respectively for 𝑛 , with 𝑝𝑛  and 𝑞𝑛 . Given arbitrary  , then,   

 𝑥11 𝑥12 𝑥13 

   and an arbitrary 𝑋 = [𝑥21 𝑥22 𝑥23] 
, with   

 𝑥31 𝑥32 𝑥33 
𝑝   then  

 𝑝1𝑥11 − 𝑥11𝑝1  𝑝1𝑥12 − 𝑥12𝑝2 

𝑃𝑋 − 𝑋𝑃 = [ 𝑝2𝑥21 − 𝑥21𝑝1 𝑝2𝑥22 − 𝑥22𝑝2 

 −𝑥31𝑝1 −𝑥32𝑝2 

𝑝1𝑥13 

𝑝2𝑥23]                                            
0 

 𝑝1𝑥11 − 𝑥11𝑝1  0 

                  = [  0 𝑝2𝑥22 − 𝑥22𝑝2 
 0 0 
 0  𝑝1𝑥12 − 𝑥12𝑝2 𝑝1𝑥13 

[ 𝑝2𝑥21 − 𝑥21𝑝1 0 𝑝2𝑥23]  

 −𝑥31𝑝1 −𝑥32𝑝2 0 

So that for a commutative 𝐵(𝐻) then  

0 
0] + 
0 

 0  𝑝1𝑥12 − 𝑥12𝑝2 

 𝑃𝑋 − 𝑋𝑃 = [ 𝑝2𝑥21 − 𝑥21𝑝1 0 

 −𝑥31𝑝1 −𝑥32𝑝2 

Now  

𝑝1𝑥13 

𝑝2𝑥23].  

0 

 𝑝1𝑥11 + 𝑥11𝑝1  𝑝1𝑥12 + 𝑥12𝑝2 

𝑃𝑋 + 𝑋𝑃 = [ 𝑝2𝑥21 + 𝑥21𝑝1 𝑝2𝑥22 + 𝑥22𝑝2 

 𝑥31𝑝1 𝑥32𝑝2 

𝑝1𝑥13 

𝑝2𝑥23]                        
0 

 𝑝1𝑥11 + 𝑥11𝑝1  0 0 

                  = [  0 𝑝2𝑥22 + 𝑥22𝑝2 0] + 
 0 0 0 

 0  𝑝1𝑥12 + 𝑥12𝑝2 𝑝1𝑥13 

 [ 2𝑥21 + 𝑥21𝑝1 0 𝑝2𝑥23]  

 𝑥31𝑝1 𝑥32𝑝2 0 
and  

 𝑞1𝑥11 − 𝑥11𝑞1  𝑞1𝑥12 − 𝑥12𝑞2 

𝑄𝑋 − 𝑋𝑄 = [ 𝑞2𝑥21 − 𝑥21𝑞1 𝑞2𝑥22 − 𝑥22𝑞2 

 −𝑥31𝑞1 −𝑥32𝑞2 

𝑞1𝑥13 

𝑞2𝑥23]           
0 

 𝑞1𝑥11 − 𝑥11𝑞1  0 

                  = [  0 𝑞2𝑥22 − 𝑥22𝑞2 
 0 0 
 0  𝑞1𝑥12 − 𝑥12𝑞2 𝑞1𝑥13 

[ 𝑞2𝑥21 − 𝑥21𝑞1 0 𝑞2𝑥23]  

 −𝑥31𝑞1 −𝑥32𝑞2 0 

0 
0] + 
0 
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Similarly, for a commutative (𝐻) then                           𝑄𝑋 − 𝑋𝑄 = 

 0  𝑞1𝑥12 − 𝑥12𝑞2 𝑞1𝑥13 

[ 2𝑥21 − 𝑥21𝑞1 0 𝑞2𝑥23] .   

 −𝑥31𝑞1 −𝑥32𝑞2 0 

Now  

 

 𝑞1𝑥11 + 𝑥11𝑞1  𝑞1𝑥12 + 𝑥12𝑞2 

𝑄𝑋 + 𝑋𝑄 = [ 𝑞2𝑥21 + 𝑥21𝑞1 𝑞2𝑥22 + 𝑥22𝑞2 

 𝑥31𝑞1 𝑥32𝑞2 

𝑞1𝑥13 

𝑞2𝑥23]             
0 

 𝑞1𝑥11 + 𝑥11𝑞1  0 

                   = [  0 𝑞2𝑥22 + 𝑥22𝑞2 
 0 0 
 0  𝑞1𝑥12 + 𝑥12𝑞2 𝑞1𝑥13 

[ 𝑞2𝑥21 + 𝑥21𝑞1 0 𝑞2𝑥23]  

 𝑥31𝑞1 𝑥32𝑞2 0 

We obtain an operator  

0 
0] + 
0 

 𝑝1𝑥11 − 𝑥11𝑞1 𝑝1𝑥12 − 𝑥12𝑞2 

(𝑃𝑋 − 𝑋𝑄) = [ 𝑝2𝑥21 − 𝑥21𝑞1 𝑝2𝑥22 − 𝑥22𝑞2 

 −𝑞1𝑥31  −𝑞2𝑥32 

 𝑝1𝑥13 

 0 ]      
0 

 𝑝1𝑥11 − 𝑥11𝑞1 0 

                    = [  0 𝑝2𝑥22 − 𝑥22𝑞2 
 0  0 

0 
0] + 
0 

 0 𝑝1𝑥12 − 𝑥12𝑞2  𝑝1𝑥13 

 [ 2𝑥21 − 𝑥21𝑞1 0 0 ]  

 −𝑞1𝑥31  −𝑞2𝑥32 0 

Now on introducing the norm function to the equality results into the norm inequality;                                                                             

 𝑝1𝑥11 − 𝑥11𝑞1 𝑝1𝑥12 − 𝑥12𝑞2  𝑝  𝑝  0 0 

 ‖[ 𝑝2𝑥21 − 𝑥21𝑞1 𝑝2𝑥22 − 𝑥22𝑞2 [  𝑝2𝑥22 − 𝑥22𝑞2 0]‖  

 −𝑞1𝑥31  −𝑞2𝑥32   0 0 
0 

                                                          + ‖[ 𝑝2𝑥21 − 𝑥21𝑞1 
0 

 0 0  0 
‖[  0 0 0]‖  

 −𝑞1𝑥31  −𝑞2𝑥32 0 

𝑝1𝑥12 − 𝑥12𝑞2 
0 
0 

 0 
0]‖ − 
0 

Application of Hilbert-Schmidt norm to this, gives us the following                                         

  |𝑝𝑖𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑞𝑗|  |𝑝𝑖𝑥𝑖𝑗 − 𝑥𝑖𝑗𝑞𝑗|2 )(𝑖 =𝑗,𝑖↔𝑗) + 

 |𝑞𝑗𝑥    

Lemma 3.0.6. Let 𝑃  and 𝑋 is compact, then 𝑠𝑗   
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Proof.                                                                                                                                                              

𝑠𝑗  is immediate from the commutativity of the singular values and 𝑠𝑗  
follows from the correspondence 𝑠𝑗 , and the inequality,  

||| 𝑃𝑋 ||| .                          

Theorem 3.0.7.  Let (𝐻) be a 𝐶 algebra, 𝑃  a commutative subalgebra of  

𝐵  and a map 𝛿𝑃,𝑄, such that 𝛿𝑃,𝑄  → 𝐵 . Let 𝛿𝑃,  → 

𝑀𝑛  be a linear map between matricial operator spaces 𝑀𝑛  and  

𝑀𝑛 . For 𝑛-tuples of  𝑃,𝑄, whereby 𝛿𝑛  → 𝑀𝑛 , then   

𝛿𝑛 𝑃, 𝑄  and  

. Moreover,  𝛿𝑃,  𝛿𝑃,𝑄 𝐶𝐵 holds.  

Proof.                                                                                                                                                                

We apply diagonal matrices  and . For , then by definition of 𝛿𝑛, 𝛿1 and 𝛿 are coincidental [20] 

hence, . We now proceed to give proofs  

when 𝑛  and when 𝑛 . For  , let ,𝑗, 𝑘 = 1,2, then for 𝛿  → 𝑀

, we now have,  

              0 𝑃2𝑋 − 𝑋𝑄2     

(𝑃1,𝑄1) 0               =  [ ]  and  

 0 (𝑃2,𝑄2) 

   ‖([𝑃01 𝑃02][𝑋0 𝑋0] − [𝑋0𝑋0] [𝑄01 𝑄02])‖ = ‖[𝑃1𝑋 −0𝑋𝑄1   𝑃2𝑋 −0 𝑋𝑄2]‖     

 (𝑃1,𝑄1) 0 
                                                                         = ‖[ ]‖       
 0 (𝑃2,𝑄2) 

                                                                        = [  ∑2𝑗=1 ∑2𝑘=1  ∥ 𝛿((𝑃𝑗, 𝑄𝑘) (Hilbert- 

Schmidt norm)  

                                                                             
1 

                                                                             

                                                                        = ∥ ((𝑃1,𝑄1) ∥       

                                                                        = ∥ 𝛿1((𝑃1,𝑄1) ∥.  

𝑃 

 𝛿2𝑃, 𝑄 = 𝛿2 ([ 01 𝑃0
2] [𝑋0𝑋0] − [𝑋0𝑋0] [𝑄01 

𝑃 
   = [ 1𝑋 − 𝑋𝑄1   0 ] 

0 
]) 

𝑄2   
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Therefore,  

∥ 𝛿2 ∥ = 𝑠𝑢{‖𝛿2(𝑃𝑄) ∶ [𝑃𝑄] ∈ 𝑀2[𝑃0(𝐻𝑛)‖}     

          ≥ 𝑠𝑢{∥ 𝛿1((𝑃1,𝑄1) ∥} = ∥ 𝛿1 ∥  

and hence ∥ 𝛿2 ∥ = ∥ 𝛿1 ∥.      

𝑃1𝑋 – 𝑋𝑄1   

When   𝑛 = 3, 𝛿3 [ 0 0 

0 

𝑃2𝑋 – 𝑋𝑄2 
0 

0 
0 

𝑃3𝑋 − 𝑋𝑄3 ]  

(𝑃1,𝑄1)   0 0 = [ 0 𝛿(𝑃2,𝑄2) 0 ]  
 0 0 (𝑃3,𝑄3) 

which implies that  

 𝑃1𝑋 − 𝑋𝑄1  0 0 (𝑃1,𝑄1)    0 0 

  ‖𝛿3 [ 0 𝑃2𝑋 − 𝑋𝑄2 0 ]‖ = ‖[ 0 𝛿(𝑃2,𝑄2) 0 ]‖      

 0 0 𝑃3𝑋 − 𝑋𝑄3 0 0 (𝑃3,𝑄3) 

                                                                                 = [  ∑3𝑗=1 ∑3𝑘=1  ∥ 𝛿((𝑃𝑗, 𝑄𝑘)      

                                                                                    

                                               (𝑃𝑗, 𝑄𝑘)      

                                               (𝑃𝑗, 𝑄𝑘) .  

This implies that  

 𝑠𝑢 (𝑃𝑗, 𝑄𝑘) (𝑃𝑗, 𝑄𝑘)  → 𝑀  𝑠𝑢𝑝 𝛿 (𝑃𝑗, 𝑄𝑘)
(𝑃𝑗, 𝑄𝑘)   → 𝑀  and therefore, .   

Lastly, consider 𝛿𝑛  → 𝑀𝑛+1[(𝐻)] defined by 𝛿𝑛+1[𝛿((𝑃𝑗, 𝑄𝑘)] = 

 [((𝑃𝑗, 𝑄𝑘)] for all 𝑗, 𝑘 .                                                        

 We obtain,   

       

                               (𝑃𝑗, 𝑄𝑘)       

                               (𝑃𝑗, 𝑄𝑘)     

                               (𝑃𝑗, 𝑄𝑘) .  

Therefore, on taking supremum on both sides of the inequality above we get 𝛿𝑛 . Application 

of the property of complete boundedness of the norm of δ, we further get  𝑠𝑢𝑝  

which implies that . Therefore, 𝐶 , this completes the claim.  
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Example 3.0.8. Let 𝛿  → 𝑀2(ℂ) be a derivation defined by 𝛿𝑃,𝑄(𝑋) = 𝑃𝑋 − 𝑋𝑄. Let an operator 𝑃, 

be defined by (𝑒𝑗) = 𝑒𝑗 on a finite dimensional Hilbert space 𝐻, for an orthonormal basis 𝑒𝑗, 𝑗 = 1,2. . ..   

We can then set the matrix for an arbitrary operator 𝑋 and that of 𝑃 as,  

  𝑋 = [𝑎𝑎1121    𝑎𝑎1222] ,   𝑃 = [𝑒01 00].   

It is clear by simple calculation that   

 𝑃𝑋 − 𝑋𝑃 = [ 1 𝑥11− 𝑥−21𝑥11𝑒1 0   𝑒1 𝑥12 ].   

 𝑝1 0 

Now suppose that 𝐻 has a unique direct decomposition given by 𝐻  𝑟𝑎𝑛𝑃  𝑘𝑒𝑟𝑃 and 𝑒1 is an identity in 
the range of 𝑃, then 𝑃𝑋 − 𝑋𝑃 becomes 𝑃𝑋  

 [ 0 𝑒1 𝑥12 ]. We can find a unitary 𝑈 = [𝑒01   −0𝑒2]such that  

 −𝑥21𝑒1 0 

 

  [−𝑥021𝑒1 𝑒1 0𝑥12 ] = (𝑈𝑋 − 𝑋𝑈)   

 

                                            

By triangle inequality,  

.  

Now considering another operator 𝑄 similar to 𝑃, we can get another orthonormal  

 basis 𝑓𝑗, 𝑗 = 1,2... such that 𝑄 is defined by 𝑄 = [𝑓𝑗 . 0].  

 0 0 

Let also 

𝑗 | 𝑒𝑗 | 𝑗 | 𝑓𝑗 |2}  = 

𝑄 and so .  

Lemma 3.0.9. Suppose that for an arbitrary    and 𝑃 𝑋, 𝑃 𝑋, 𝑋𝑄1, 𝑋𝑄  then, 𝑛𝑝

 𝑃𝑖𝑋𝑖 𝑝  𝑃𝑖𝑋𝑖 𝑝𝑝 for  and the reverse inequalities hold for  

.  

Proof. If   and 𝑎 , are nonnegative real eigenvalues for 𝑃1 and 𝑃2, then                                   
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𝑛𝑝 𝑛𝑖  𝑎𝑖𝑝. The inequalities follow, respectively, from the concavity of the 

function    𝑓  𝑡𝑝, 𝑡  for , and the convexity of the function (𝑡) = 𝑡𝑝, 𝑡 for

.  

Proposition 3.1.0. Let 𝑃  and an arbitrary 𝑋  

 𝐵  for some 𝑝 . Then  𝑃𝑖𝑋𝑖  𝑃𝑗𝑋𝑖  𝑋𝑖𝑄𝑖   𝑋𝑗𝑄𝑗  

 𝑝  𝑝  

  𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑗  𝑋𝑖𝑄𝑖 𝑝 

𝑝  

𝐷𝑋  𝑃𝑗 𝑋𝑗 ( 𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑖) (𝑋𝑖𝑄𝑖  

 𝑃𝑖𝑋𝑖) .  

Proof.           

 We define  a constant 𝐷𝑃  by 𝐷𝑃 = ∑𝑛𝑖=1 𝜋(𝑃𝑖𝑋𝑖)    where                                         

   ∑2𝑖=1 (𝑃𝑖𝑋𝑖) = {10,, ((𝑃𝑃𝑖𝑖𝑋𝑋𝑖𝑖))≠= 0 0;,      

and         𝐷𝑃 = ∑2𝑖=1 𝜋(𝑋𝑖𝑄𝑖)     where               

       (𝑋𝑖𝑄𝑖) = {01,,   ((𝑋𝑋𝑖𝑖
𝑄𝑄𝑖𝑖

)) ≠= 0 0;                                                                                                                       

We prove the case for 0 < p < 2 and infer the result onto the other cases. We have  

∑2𝑖,=1 ∥ 𝑃𝑖𝑋𝑖 – 𝑋𝑗𝑄𝑗  𝑋𝑖𝑄𝑖 – 𝑋𝑗𝑄𝑗  

(∥ ∑2𝑖=1( 𝑖𝑋𝑖 − 𝑋𝑖𝑄𝑖) ( 𝑋𝑖𝑄𝑖 – 𝑋𝑖) (𝑋𝑖 – 𝑃𝑖𝑋𝑖)  

 2(∑1<𝑖<𝑗<2 ∥ 𝑃𝑖𝑋𝑖 − 𝑃𝑗𝑋𝑗  𝑋𝑖𝑄𝑖 – 𝑋𝑗𝑄𝑗  

 𝑋𝑗 ( 𝑃𝑖𝑋𝑖 − 𝑋𝑖𝑄𝑖) ( 𝑋𝑖𝑄𝑖  𝑃𝑖𝑋𝑖)  

 2(∑1<𝑖<𝑗<2 ∥ | 𝑃𝑖𝑋𝑖 − 𝑃𝑗𝑋𝑗|  | 𝑋𝑖𝑄𝑖 − 𝑋𝑗𝑄𝑗|  

| 𝑃𝑖𝑋𝑖 − 𝑋𝑖𝑄𝑖| ( 𝑋𝑖𝑄𝑖 − 

 𝑋𝑖)  𝑃𝑖𝑋𝑖| | 𝑃𝑖𝑋𝑖 − 𝑃𝑗𝑋𝑗|2 + 

 ∑1<𝑖<𝑗<2| 𝑋𝑖𝑄𝑖 − 𝑋𝑗𝑄𝑗|2 + ∑2𝑖=1 |( 𝑃𝑖𝑋𝑖 − 𝑋𝑖𝑄𝑖)|2‖𝑝𝑝//22 + ‖∑1<𝑖<𝑗<2| 𝑋𝑖𝑄𝑖 − 𝑋𝑗𝑄𝑗|2 + 

 ∑1<𝑖<𝑗<2|𝑋𝑖 − 𝑋𝑗|2 + ∑𝑖
2=1|(𝑋𝑖𝑄𝑖 − 𝑋𝑖)|2‖𝑝

𝑝
/

/2
2 + ‖∑1<𝑖<𝑗<2|𝑋𝑖 − 𝑋𝑗|2 + 

 ∑1<𝑖<𝑗<2| 𝑃𝑖𝑋𝑖 − 𝑃𝑗𝑋𝑗|2 + ∑2𝑖=1| 𝑋𝑖 − 𝑃𝑖𝑋𝑖| | 𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑗|2‖𝑝𝑝//22 + 
𝑝 

 ‖∑2 𝑖,=1| 𝑋𝑖𝑄𝑖  𝑃𝑗𝑋𝑗|2‖𝑝𝑝//22 ≥ 𝐷  −𝑋𝑄 ,𝑗=1‖ 𝑃𝑖 𝑋𝑖 − 

− 𝑃 
2   ∑ 𝑖 , 𝑗 = 1 

2 ∥ 𝑋 𝑖 − 
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 𝑝 𝑝 

 𝑋𝑗𝑄𝑗|2‖𝑝𝑝//  𝐷𝑋𝑄−𝑋 ∑ 𝑖,=1‖| 𝑋𝑖𝑄𝑖 − 𝑋𝑗| ‖𝑝/2  𝐷𝑋−𝑃𝑋∑2 𝑖,𝑗=1‖|𝑋𝑖 − 
𝑃𝑗𝑋𝑗|2‖𝑝𝑝//22 = 

𝑝𝑝 𝑝 

2‖ 𝑃𝑖 − 𝑄𝑗‖𝑝𝑝,=1‖ 𝑋𝑖𝑄𝑖 − 𝑋𝑗‖𝑝𝑝,𝑗=1‖ 𝑋𝑖 − 𝑃𝑗𝑋𝑗‖𝑝𝑝  
 𝐷𝑃𝑋 

Proposition 3.1.1. Let 𝑃1,2, 𝑄1,𝑄2 ∈ 𝐶𝑃 for some 𝑝 > 0. Then ∑2
𝑖,=1‖𝑃𝑖𝑋𝑖 − 

𝑃𝑗𝑋𝑗‖𝑝𝑝 + ∑2𝑖,=1‖𝑋𝑖𝑄𝑖 − 𝑋𝑗𝑄𝑗‖𝑝𝑝 ≥ 2.2𝑝−2∑2𝑖,𝑗=1‖𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑗‖𝑝𝑝 − 2‖∑ 2𝑖=1(𝑃𝑖𝑋𝑖 − 

𝑝 
𝑋𝑖𝑄𝑖)‖𝑝 for  0 < 𝑝 ≤ 2.  

Proof.                                                                                                                                                                
 𝑝−2 𝑝−2 𝑝−2 

 We set  𝑄  ‖𝑋𝑖𝑄𝑖‖𝑝𝑝, 𝐷𝑋 ‖𝑋𝑖 − 𝑃𝑗𝑋𝑗‖𝑝𝑝 = 
𝑝−2 

‖𝑃𝑖𝑋𝑖‖𝑝𝑝.  

𝑝  
𝑝𝑝 

  ‖𝑃𝑖𝑋𝑖  𝑃𝑗𝑋𝑗‖𝑝 ‖𝑋𝑖𝑄𝑖   Now 

𝑋𝑗𝑄𝑗‖𝑝𝑗 ‖𝑃𝑖𝑋𝑖 − 

 𝑝  𝑝  
𝑝𝑝𝑝 

𝑋𝑖𝑄𝑖‖𝑝  𝑃𝑗 𝑋𝑗 ‖  𝑋𝑗𝑄𝑗‖𝑝 

 (𝑃𝑖𝑋𝑖 − 𝑋𝑖𝑄𝑖)𝑝 + 

𝑝𝑝𝑝𝑝 
 ‖  𝑋𝑖𝑄𝑖‖𝑝 𝑃𝑖𝑋𝑖‖𝑝)

𝑗 ‖𝑃𝑖𝑋𝑖 − 𝑃𝑗𝑋𝑗‖𝑝‖𝑋𝑖𝑄𝑖  𝑋𝑗𝑄𝑗‖𝑝 − 

 𝑝  𝑝  
𝑝𝑝 

 ‖𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑗‖𝑝 (𝑃𝑖𝑋𝑖 − 

𝑋𝑖𝑄𝑖) 𝑗 ‖𝑃𝑖𝑋𝑖 − 

𝑝 

𝑝𝑝𝑝 
 𝑋𝑗𝑄𝑗‖𝑝  (𝑃𝑖𝑋𝑖 − 𝑋𝑖𝑄𝑖) 𝑋𝑖𝑃𝑖‖𝑝 ‖𝑃𝑖𝑋𝑖‖𝑝) + 

 𝑝  𝑝  

 ‖𝑋𝑖𝑄𝑖‖𝑝𝑝 ‖𝑋𝑖𝑄𝑖‖𝑝𝑝) ,𝑗 ‖𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑗‖𝑝𝑝  (𝑃𝑖𝑋𝑖  − 
𝑝 

 𝑝 

  
 𝑋𝑖𝑄𝑖) 𝑗 ‖|𝑃𝑖𝑋𝑖 − 𝑋𝑗𝑄𝑗| 𝑝/ |𝑃𝑖𝑋𝑖  − 𝑋𝑖𝑄𝑖| 𝑝/ .  

𝑝 

− 𝑋 
2 ∑ 𝑖 , 𝑗 = 1 

2   = 2   𝐷 𝑄 
2 ∑ 𝑖 = 1 

2 
− 𝑃 
2 ∑ 𝑖 , 𝑗 = 1 

2 

. 𝐷 𝑃 − 𝑄 
2   ∑ 𝑖 

2 

‖ 
𝑝 + ( 𝐷 𝑃𝑋 − 𝑋𝑄 

2 ∑ 𝑖 , 
2 

‖ 
𝑝 =   𝐷 𝑃𝑋 − 𝑋𝑄 

2 − 1 
∑ 𝑖 , 

2 
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Since   is greater than or equal to , we deduce from lemma 4.20 that  

𝑝 
 𝑝   𝑝

 𝑝  𝑝 
  ‖  𝑃𝑖𝑋𝑖‖𝑝 𝑃𝑋 𝑖 ‖𝑃𝑖𝑋𝑖‖𝑝  𝑃𝑖𝑋𝑖‖𝑝 ‖𝑋𝑖𝑃𝑖‖𝑝 .  

𝑝  
𝑝𝑝 

 Similarly, we have ‖ 𝑋𝑖𝑄𝑖‖𝑝 ‖𝑋𝑖𝑄𝑖‖𝑝. It therefore implies that    

𝑝 𝑝𝑝𝑝 
 ‖𝑃𝑖𝑋𝑖  𝑃𝑗𝑋𝑗‖𝑝  ‖𝑋𝑖𝑄𝑖  𝑋𝑗𝑄𝑗‖𝑝 𝑗 ‖𝑋𝑖𝑄𝑖  𝑋𝑗𝑄𝑗‖𝑝  

𝑝𝑝𝑝 
 (𝑃𝑖𝑋𝑖  ‖𝑃𝑖𝑋𝑖  𝑋𝑖𝑄𝑖) 𝑝 𝑗

𝑋𝑗𝑄𝑗‖𝑝  (𝑃𝑖𝑋𝑖  𝑋𝑖𝑄𝑖)‖𝑝 𝐷𝑃𝑋−𝑋𝑄.  

  

 

Conclusion   
  
In this paper,  the study has  shown that the norm of a derivation,  induced by orthogonal projections via 

tensor product is linear, bounded and continuous. Furthermore, there is  inequalities of such a derivation 
induced by n-tupled orthogonal projections.   

  

  
  

≥   2 𝐷 𝑃𝑋 − 𝑋𝑄 
2   ∑ 𝑖 , 

2 
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