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Abstract. 

Over the years, various malware detection approaches have been proposed in a bid to address evolving 

malware threats landscape in android operating system. Systematic literature reviews to analyze these 

detection approaches have been carried out, but none have been tailored to identifying challenges with 

android malware detection based on the use of Android program interface (API) features, hence there 

is no aggregated information on what work has been done by researchers in this area. This research, 

therefore, presents a systematic literature review on API feature based android malware detection 

literatures between 2018 to 2022 collected systematically using PRISMA frameworks. This study seeks 

to identify the challenges faced in android malware detection over the years, methodologies used to 

address them and limitations of API based feature detection. These useful insights documented in this 

research will serve as valuable resources which researchers can leverage on to improve the detection of 

android malware. 
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Introduction 

The number of smartphone users in the world has grown from 4.435 billion to 6.648 billion 

from 2017 to 2022 and this number constitutes 90.72% of the world’s population according to 

a report by Statista. The large percentage of mobile phone users motivates attackers to target 

mobile phone platforms, predominantly android operating systems with malwares as more 

persons are interconnected and exposed to the threats. With more people exposed to the 

threat and proliferation of various applications in the android platform, comes the increased 

burden to protect users’ devices against malicious applications and attacks. Over the years, a 

number of malware detection approaches have been proposed in a bid to address evolving 

malware threats landscape in android operating system. Researchers have employed the use 

of static features such as permission and strings, however this approach contends with the 

challenge of code obfuscation and other malware evasion techniques. Systematic literature 

reviews to analyze these detection approaches have been carried out by some researchers, 

but none have been tailored to android malware detection based on the use of API feature, 

hence there is no aggregated information on what work has been done by researchers in this 

area. This research, in a bid to identify the recent challenges associated with the detection of 

malicious applications on the android devices, carried out a systematic review of the existing 

detection strategies using API features. API feature based android malware detection papers 

between 2018 to 2022 were collected systematically using PRISMA frameworks and 

challenges faced in android malware detection over the years, methodologies used to address 

them and limitations API based feature detection is subject to have been identified and 

documented by this research. Also type of analysis employed and datasets used by the 

researchers as well as performance reported by the papers were highlighted. The remaining 

parts of the research are organized as follows: the related work is discussed in the section 2 
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of this work while the section 3 is used to discuss the methodology adopted to carry out the 

review. Section 4 discusses the analysis and result and section 5 presents the conclusion. 

 

Related Work 

Several works have been done in the area of android malware analysis and detection but 

more of the works were based on static features. Application Programming Interface is one 

useful feature that can define the behavior of applications therefore considering the limitation 

of permission based static features; malware researchers have drifted to approaches that use 

the behavioral pattern of applications in their quest to improve android malware detection 

mechanism. There are systematic literature reviews that have been conducted by different 

researchers on android malware detection but we have not come across any that examined 

android malware detection based on the use of API features. There is therefore no aggregated 

information on what work has been done by researchers in the area of API feature based 

analysis and detection. (Ashawa and Morris, 2019) carried out a systematic review of the 

malware detection techniques used for android devices. The review highlighted strengths 

and limitations of various detection techniques but not much was said on techniques using 

API based features. Similarly, (Ehsan et al. 2022) conducted a systematic literature review on 

android platform, analyzing articles focused on permission analysis for malware detection. 

On the other hand, Ya et al (2020) examined static analysis techniques for malware detection. 

They categorized static analysis into methods that are opcode based, program graph based, 

symbolic execution based and android characteristics based. They observed that static 

analysis methods are effective but are however faced with some challenges that needed to be 

addressed to improve android malware detection. Other SLRs dealt with the subject of 

android malware detection from a general perspective, hence our motivation to carry out a 

systematic literature review narrowed down to techniques that employ use of API based 

features.  
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Research Methodology 

This section shows the methodology used in carrying out the systematic literature review. 

The steps followed are presented using figure1. 

 

 

 

 

 

 

Figure 1. Systematic Literature Review Steps

Review Protocol 

PRISMA framework was used to carry out this review. PRISMA stands for Preferred 

Reporting Items for Systematic Reviews and Meta-Analysis. It is an evidence-based 

minimum set of items for reporting systematic reviews and meta- analysis.  

Data Collection  

Articles searched and used for this review were systematically collected using the 

PRISMA framework.  

a) Identification Stage 

Material used for review were identified using search keywords and literature identified 

from IEEE, SCIENCEDIRECT and Google Scholar. The breakdown is as shown below; 

A = Articles identified from IEEE   -  98 

B = Articles identified from Science Direct -  65  

ADs = Articles identified with Google Scholar – 50 

Table  1:  Review Data Collection Parameters

 

Criteria  

Search 

Keyword 

“Android Malware Detection” AND “API   Call” was used to search for 

the review articles and databases searched are Science Direct and IEEE 

 

 Defined Research 

Questions 
 Collect Data  Analyzing and 

presenting result 

 Interpreting result  
Defined Review 

Protocol 
 Critical appraisal 

(Inclusion/exclusion
) 
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Inclusion  A1 = Journals and conference papers 

A2 = Papers that discussed API as feature  

A3 = Papers between 2018 - 2022 

Exclusion B1 = Papers later than 2018 

B2 = Paper not explicitly related to android malware detection using API 

features 

B3 = duplicate copies indexed in other databases 

 

b) Screening Stage 

The papers collected were subjected to a screening procedure applying inclusion criteria 

A1, A2, A3 and exclusion criteria, B3 where 27 duplicates were removed. Furthermore, 

applying exclusion criteria B2, title and abstracts were reviewed to reduce the articles to 

the subject area in focus. This reduced the papers collected for review to 54. The 

breakdown from each database is as shown in table 2. below 

Table 2: Papers Collected from Database

 

DATABASE Number of Papers  

IEEE 25 

SCIENCE DIRECT 18 

GOOGLE SCHOLAR (Springer, ACM, 

Research gate) 

11 

TOTAL 54 

 

c) Eligibility Stage 

Quality of papers collected was assessed to ensure they are useful for the research. 

Duplicates were removed, abstract were thoroughly reviewed in line with the research 

focus and no paper was removed as a total of 54 papers were retained.   
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d) Inclusion Stage 

Based on the inclusion and exclusion parameter earlier defined, all 54 papers screened 

were used for the review. 

Critical Appraisal (Inclusion/exclusion) 

The processes carried out between screening stage and eligibility stage defined in the 

PRISMA framework constitute the step of critical appraisal in the methodology. The 

papers returned after searching the database using the above keywords and 

inclusion/exclusion criteria were critically appraised. Papers within the scope of research 

bordering on API calls were kept while papers outside the scope which discussed other 

methods of detection other than use of API were screened. Furthermore, papers not 

related such as those that discussed cloud-based detection; windows OS or PE based and 

IoT based detection were screened leaving a total of 54 papers for synthesis in the review. 

Figure 2 shows the article search flow from the identification stage to articles included 

for the study 

 

 

Figure 2: Prisma Flow Diagram 
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1. Analyses and Result Presentation 

In this section, we provide answers to our research questions using papers studied. Figure 3 

shows frequency distribution of papers from database sources, figure 4 shows frequency 

distribution of datasets used.  

RQ1 - Are there challenges with Android Malware Detection approaches that prompted 

consideration for use of API features?  

There have been a lot of efforts put into proffering solutions to malware attacks in android 

platforms by different researchers. However, these solutions have been fraught with myriad 

challenges which prompted researchers to consider the use of API call features with different 

models to address.    

Wang et al (2020) observed that lack of descriptive distinctive feature of malware behavior 

and intent poses a challenge for android malware detection and proposed invocation of local 

sensitive API call using function call graph to address the challenge.   Elsewhere, the work 

by Alzaylaee et al (2020) noted that employing static analysis using extracted features like 

API calls, commands and intent are prone to obfuscation where malicious code is concealed 

to prevent detection. Therefore, an approach to detection which considers extracting android 

permissions (static features) before execution of application and then extracting the API calls 

and Intents during execution (dynamic feature) was proposed using multilayer perceptron 

classifier, (MLP. Kumar and Ciza, 202) also alluded to the problem of code obfuscation with 

static analysis but employed a different approach to solving it. Obfuscation has also been 

mentioned in other reports (Lu, et al. 2019, Moutaz et al. 2020, Elayan and Mustafa 2021 and 

Michele et al, 2019). Other reports (Arindaam et al. 2020, Stuart et al. 2021) noted inability to 

detect zero-day malware as a challenge while (Roopak et al. 2020) cited the problem of 

multicollinearity and data overfitting in most classifiers used. The challenge of dynamic code 

loading was also stated by Elayan and Mustafa (2021) while Pang and Bian (2019) averred 
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that dynamic analysis is not efficient and malware detection can be limited due to execution 

time and code trigger condition. The research by Feng et al, (2020) also noted poor efficiency 

of dynamic analysis due to limitation in code coverage while (Kumar et al 2021) indicated 

that the problem of unbalanced dataset affected precision, recall, and F1 score values of the 

classifiers used and should be considered for investigation in the future. 

RQ2 – Are there challenges with use of API in Android Malware Detection and can the 

challenges affect the detection? 

Literature synthesized suggests that API features can be employed dynamically or statically 

with appropriate models to solve malware detection issues effectively.  However, challenges 

also exist that can affect android malware detection where API features are used. Roopak et 

al, (2020) used conditional dependencies among relevant static and dynamic features (API 

calls, permissions and system calls) which are required for an app to work were used in a 

Tree Augmented Naive Bayes based hybrid malware detection mechanism and observed 

that few malicious software can evade the detection model by using adversarial techniques. 

Consequently, the researchers suggested future work for more powerful Bayesian models to 

be built for effectively identifying such adversarial malware applications by employing 

reinforcement learning techniques. Elsewhere, Michele et al, (2019) in their research relied 

on system API information to distinguish ransomware from other malicious and benign 

applications. Although inclusion of sample into the training set, meant the approach worked 

well against string obfuscation and heavy antistatic obfuscation done with class encryption, 

evasion is possible with this approach using semantically equivalent user implemented 

packages/classes/methods. Further to this, adversarial attack can also affect the outcome. 

According to Millar et al (2021), APIs usage as features requires a lot of feature-engineering 

and domain insight hence not effective in zero-day scenarios. Good accuracy and F1 score 

was achieved in work by Feng et al (2021) when they used graph neural networks to 

automatically capture critical information from call graphs rather than manual selection of 
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API calls, API call sequences and call traces. However, obfuscation techniques like packing, 

dynamic code loading and bytecode encryption could not be handled. Also, the approximate 

call graph used cannot capture reflection, implicit callback and implicit control flow and this 

could be exploited to evade detection.  

In another research, Hadiprakoso et al (2020) declared that classical machine learning 

algorithms are dependent on feature engineering. This brings to the fore issues of expert 

domain knowledge needed for representation of the features as well as attackers’ capability 

to evade detection once the features. Shen et al (2019) argued that evolution in modern 

malware has made reliance on simple information flow ineffective because modern malware 

performs complex computations before, during, and after collecting sensitive information 

and also, benign applications now use the same information that malicious applications 

gather. By performing N-gram analysis on sequences of API calls that occur along Complex-

Flows' control flow paths to identify unique and common behavioral patterns present in 

Complex-Flows they developed a new mobile malware detection technique based on 

information flow. 

Call Graphs gives information about API calls and shows relationship between methods in 

applications. However, Feng et al (2020) revealed that use of precise call graph consumes 

resources and results in poor efficiency. The work by Yang et al, (2021) also raised the same 

concern of resource consumption. They noted that thousands of APIs are provided by 

android platforms, therefore analysis of all function call graphs would consume large 

resources. Wang et al, (2022) on their part stated that API call sequences are usually too long, 

therefore a truncated segment of the API call sequences or its statistical features in malware 

detection was used by some researchers but it suffers from high false alarm because 

execution order information of the applications are lost. From the foregoing it can be seen 

that code coverage limitation, trigger conditions, dependence on expert knowledge for 
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feature selection, high volume of resource consumption, imbalance dataset among others 

constitute challenges that can affect malware detection where API call features are employed. 

RQ3- Are there appropriate methods available to address the challenges of android 

malware detection using API features? 

Various researchers have proposed solutions to address perceived challenges in android 

malware detection. Alzaylaee et al, (2020) proposed DL-Droid, which used dynamic stateful 

input generation to enhance code coverage. DL-Droid also focused on dealing with code 

obfuscation and employed real devices to avoid anti-emulator tendencies of malware. Their 

approach to detection considered extracting static features of android permissions before 

program execution, and then extracting the API calls and intents dynamically during 

execution using Multilayer Perceptron classifier, MLP. Kumar and Ciza, (2021) in their 

research also attempted to deal with the problem of code obfuscation with static analysis. 

The authors identified suspicious API classes and methods used by Malware apps and 

generated MSA (Multiple Sequence Alignment) corresponding to API class sequences 

present in malware applications to overcome malware evasion techniques using machine 

learning classifier Profile Hidden Markov Model(PHMM). 

Elsewhere, Arindam et al, (2020) proposed a light weight detection framework that operates 

upon only 50 features. The method adopted for their research analyzed API calls extracted 

from smali code, maps the API Calls to certain features (permission) and constructed a 

frequency-based feature vector for each application. The approach bridges the existing gap 

of high need of resources such as time, space and computational power in existing work. 

Similarly, a malware detection system, MAPAS which learns behaviors of malwares by using 

a deep learning algorithm (CNN) and detects malware based on common patterns of API 

call graphs of malware was proposed to effectively deal with issues of high computing 

resources (Kim et al, 2022). Stuart et al, (2021) on the other hand addressed issues of expert 

domain knowledge required for feature engineering and attendant inability to detect zero 
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day scenarios. They proposed a solution that used Convolutional Neural Network CNN to 

learn from a limited set of only 210 proprietary Android API packages that have no expert 

pre-categorization as sensitive or otherwise.  

Exploiting the advantages of deep learning to address featuring engineering in classical 

machine learning, (Hadiprakoso et al 2020) designed a new system that compiles static and 

dynamic analysis features such as API call sequence, system command, manifest permission, 

intent and process the data using a deep neural network. (Wang et al, 2022a) introduced an 

efficient extraction algorithm for API call sequences, which contains two sub‐algorithms. The 

first sub‐algorithm simplifies the function call graph from a multigraph to a simple graph, 

and the second develops a pruning depth‐first search. The authors posit that the existing API 

call sequence extraction methods are laborious and time‐ consuming, which seriously 

decreases the efficiency of static analysis, hence the need to adopt the methodology. 

Wang et al, (2022b) addressed the challenge of high false alarm caused by use of statistical 

features or truncated segments of API call sequences with their proposed FGL_Droid. 

FGL_Droid converts dynamic API call sequence into a function call graph, joins the function 

call graph feature and extracted permission request feature to carry out malware detection. 

The function call graph retains most of the application execution order information with 

significantly reduced sequence size and missed behavior information during conversion is 

made up for with the advanced features of permission requests extracted. 

RQ4 - Are the available detection methods effective?  

The effectiveness of detection methods used in various studies was largely measured with 

the performance evaluation metrics Accuracy, Precision, Recall and F1 Score. The 

approaches to android malware detection employed had good results with the various 

metrics hence taken to be effective. However, these performances could be investigated 

further as the type, size and nature of the sample of dataset used could result in bias in 

performance. 
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RQ 5 - Are there datasets being used in the primary studies? 

The datasets used by selected primary studies and their frequency is represented in the 

figure 3. 

 

Figure 3: Frequency distribution of papers from Database Sources 

 

Figure 4: Frequency Distribution of Datasets used 

 

5.  Conclusion  

This review examined literature on android malware detection with API call features. The 

study revealed that various researchers have employed the use of static analysis and 

dynamic analysis using API call features in detecting malicious android applications. The 

review also outlined different methodologies/algorithms with their performances and 

datasets used by authors in malware detection. Furthermore, challenges with android 
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malware detection in the research area which include code obfuscation, dynamic code 

loading issues with static analysis as well as limited code coverage, high resource 

consumption, execution time and trigger condition issues with dynamic analysis were 

identified among others. Various machine learning/deep learning methods and approach 

employed in the detection and analysis as revealed in the review provide useful insight 

researchers can leverage to improve android malware detection and is considered as a 

valuable contribution in this work. 
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Abstract  

The current demand for the eradication of malaria marks a new-fangled chapter in the antiquity of this 

illness. This has been brought about by the striking decreases in malaria caused by administration of 

efficient medications and vector control.  However, the emergence of pesticide resistance poses a 

challenge to this approach. Alternative tools must be developed to continue supporting or potentially 

replace insecticide-based vector control methods. Long-lasting insecticidal nets (LLINs) and indoor 

residual spraying (IRS) continue to be the mainstays of the majority of National Malaria Control 

Programs in Africa, despite the large number of promising control tools tested against mosquitoes. 

These strategies are not enough to successfully control malaria. While these techniques are successful 

in lowering malaria incidence, their overall effectiveness in lowering malaria prevalence is often 

limited. Additionally, efficiency of LLINs and IRS is threatened by the rising rates of pesticide 

resistance in the targeted mosquito populations. Thus, although larvicidal treatments can be beneficial, 

using them in rural regions is not advised. To enhance mosquito vector control efforts and improve 

their quality and delivery, it is important to focus on integrated approaches. Successful malaria 

eradication requires close collaboration between parasitologists and entomologists, along with a 

comprehensive evaluation of epidemiological impact of innovative mosquito vector control strategies. 

This review discusses current malaria vector control strategies and highlights challenges, and 

promising tools that are expected to contribute to malaria eradication. 

Keywords: Malaria, Vector Control, Current Challenges and Future Strategies.  
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