

REVIEW ON VARIATION IN GENETIC AND CHEMICAL CONSTITUENTS OF Strychnos henningsii POPULATIONS IN KENYA

WAHU K.M.

School of Education, Humanities and Social Sciences Kabarak University, Kenya

Correspondence: mkuria@kabarak.ac.ke

Abstract

Strychnos henningsii is an indigenous medicinal plant species widely used in tropical Africa. Studies have revealed that this plant has been used as a remedy for various ailments including rheumatism, gastrointestinal complications, abdominal pains, syphilis, snakebites, diabetes malaria, and arthritis amongst others. Phytochemical and pharmacological studies have identified various compounds such as alkaloids, anthraquinones, cardiac glycosides, chalcones, flavonoids, phenolics, proanthocyanidins, saponins, steroids, tannins and triterpenes from the crude extracts of S. henningsii. These chemical constituents exhibited analgesic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiplasmodial, antiprotozoal, antispasmodic as well as cytotoxicity activities. Secondary metabolites are known to aid plants in coping with various environmental stresses. Environmental stress triggers expression of genes for the enzymes involved in biosynthesis of secondary metabolites, many of which have higher medicinal value despite being useful in plant defense mechanisms. This paper is a review on the chemical constituents, pharmacological properties and genetic variation of S henningsii across its geographical range.

Key Words: Strychnos henningsii, chemical constituents, genetic, medicinal, variation.

43
African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

INTRODUCTION

Botanical information of *S. henningsii.*

S. henningsii belongs to the family Strychnine but was earlier included in the family Loganiaceae. The species epithet honors Professor Paul Christopher Henning, a mycologist at the Royal Botanical Gardens, Berlin-Dahlem. The common names are Red bitter berry (English) (Gachathi, 2007), Henning's Strychnos (Maundu and Tengäs, 2005). The local names include Muteta (Kikuyu and Kamba), Maset (Kipsigis), Entuyesi (Maasai), Mutambi (Mbeere), Muchimbi (Meru), Kapkamkam (Pokot), Nchipilikwa (Samburu), Hadesa (Somali), Turukukwa (Tugen) and Yapoliss (Turkana) (Maundu and Tengäs, 2005).

It varies in size from a shrub or small erect tree, much-branched tree of about 2 to 15 m tall with green-reddish stem. The bark is pale grey and smooth in young trees but becomes dark brown and somewhat flaky in specimens. The twigs have pale ashy or straw-colored and waxy skin splitting lengthwise. Lenticles are few and inconspicuous. Leaves are opposite, sub-sessile or ovate, 2.5 to 6.5 cm long and 0.8 to 4.5 cm wide. They have an entire margin and acuminate leaf tips. The leaves are strongly; three to five nerved from base cuneate or rarely sub-cordate at base; a characteristic feature in Strychnos species (Van wyk et al., 1997). Floral cymes are borne on flat clusters in the leaf axils, 2 to 2.5 mm long and 4 mm wide when open, scented, yellowish-green in color turning orange with age. The ovary is globose with a short style. The fruit is up to 1.9 cm long and 6 to 11 cm wide, oblong or roundish with one to two seeds (coffee-like) red, brown or orange when ripe (Figure 1) (Beentje, 1994; Gachathi, 2007; Maundu and Tengäs 2005).

S. henningsii is a semi-deciduous plant commonly occurring in the dry and moist forests, wooded hillsides and thickets, on rocky hills, coastal forests and stream banks. It is native to Angola, Mozambique, South Africa, Swaziland, Tanzania and Uganda. In Kenya, it is widely distributed in Nairobi, Kakamega, and in the Central province. It is often associated with dry

44
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

Podocarpus and Olea forests, hillsides, thickets and *Combretum* bushland (Maundu and Tengäs, 2005). It is raised from seedlings or wildings. The species also suckers well. The pulp is removed before sowing the seeds. The seeds exhibit orthodox storage behavior. It is managed through pruning and coppicing (Maundu and Tengäs, 2005).

In the African traditional medicine, it is used for treatment of various ailments including rheumatism, gastrointestinal complications, abdominal pains, syphilis, and possibly of value in dysmenorrhoea (Hutchings, 1989; Watt and Breyer, 1962; Pujol, 1993; Hutchings, 1996; Oyedemi et al., 2009). Root's bark and green fruits of Strychnos species are used as a remedy for snakebites (Tits et al., 1991; Van Wyk et al., 1997) and hookworm infections in Tanzania (Oyedemi et al., 2009). The bark decoction is employed as a remedy for rheumatism and arthritis (Palgrave, 1988; Beentje, 1994). A decoction of the plant has been used in traditional Kenyan medicine for the treatment of rheumatism, gynecological complaints, chest pain, internal injuries and malaria (Kareru et al., 2007). The ground bark is a mouth antiseptic and applied on the wounds in cattle and horses to hasten healing (Gachathi, 2007). In South Africa, the decoction or infusions from the stem bark is widely used for the management Diabetes mellitus (Oyedemi et al., 2009). The aqueous bark extract is also used in South Africa for the treatment of stomach, colic, dizziness and as a purgative agent (Oyedemi *et al.*, 2013). Almost all parts of *S. henningsii* are used as a source of medicine, however studies conducted elsewhere (Alfred, 2021 and Kuria et al., 2012) revealed that the roots, stem and the bark are the most commonly used parts for medicinal purposes in different parts of Africa. This plant species is mainly used as an anthelmintic, appetizer, blood cleanser, purgative, and tonic as well as in ethnoveterinary medicine (Alfred, 2021). In traditional medicine, it is mainly used as a remedy for abdominal pain, bilharziasis, colic, diabetes mellitus, gastro-intestinal complications, headache, malaria, menstrual problems, respiratory diseases, rheumatism, snake bites and syphilis (Alfred, 2021 and Kuria et al., 2012).

45
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

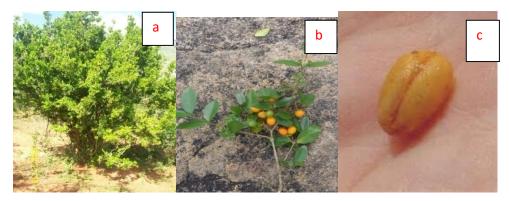


Figure 1 a, b and c: S. henningsii Shrub, fruits and seed

Variation in chemical constituents and pharmacological properties of S. henningsii

Various studies conducted by different authors have revealed various bioactive compounds isolated from different parts of *S. henningsii*. Such compounds include the indolinic alkaloids, strychnine, brucine, curanine, and bitter glycosides with significant values (Penelle *et al.*, 2000; Oyedemi *et al.*, 2010a). Other compounds including holstine, diaboline, strychnochromine and guianensine have been isolated from the stem and root bark of *S. henningsii* (Angenot and Tits, 1981). A research conducted by (Alfred, 2021) also revealed a wide range of biological compounds such as alkaloids, anthraquinones, cardiac glycosides, chalcones, flavones, flavonoids, flavonols, phenolics, proanthocyanidins, saponins, steroids, sterols, tannins and triterpenes produced by this plants species. These compounds have been isolated from the bark, leaves, roots, root bark, stem bark and twigs of *S. henningsii*. Some of these phytochemical compounds may be responsible for the various pharmacological properties exhibited by *S. henningsii*.

Pharmacological studies have shown that the different phytochemical compounds identified from extracts of *S. henningsii* have various biological activities. They included antibacterial (Tirop et al., 2019; Njire et al., 2010), antidiabetic (Ngugi *et al.*, 2011; Oyedemi *et al.*, 2012; 2013), anti-inflammatory (Tits *et al.*, 1991), antioxidant, (Oyedemi *et al.*, 2010a; 2013)

46
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

antiplasmodial (Phillipe *et al.*, 2005; Kirira *et al.*, 2006; Frederich *et al.*, 1999), antiprotozoal (Wright *et al.*, 1994), antispasmodic (Tits *et al.*, 1991), cytotoxicity (Oyedemi *et al.*, 2012 and 2013) and toxicity (Ogeto *et al.*, 1984; Oyedemi *et al.*, 2010a; Tirop *et al.*, 2018). Although there are several reports about phytochemical constituents and pharmacological properties of *S. henningsii*, information about the variation of these chemical constituents of *S. henningsii* based on its geographical location is unavailable.

Plants of the same species growing in different geographical locations are subjected to a wide range of biotic and abiotic environmental factors (Hartmann *et al.*, 2005; Rapinski *et al.*, 2014 and 2015; Baille *et al.*, 2016; Mahmoud *et al.*, 2016). These environmental factors trigger an adaptive response by stimulating gene expression for enzymes responsible for production of a wide array of secondary metabolites in plants which in turn may have medicinal value (Mahmoud *et al.*, 2016). The environmental stressors include temperature, low precipitation, solar radiation as well as edaphic factors. These environmental factors are subject to latitudinal, longitudinal and altitudinal gradients and hence the differences in the chemical constituents of plants (Dixon *et al.*, 2006; Asensio *et al.*, 2020).

There is a general perception among the traditional healers and elders that plants in the Northern latitude and coastal regions are more efficient sources of traditional medicine as well as higher altitude because they accumulate higher concentrations of secondary metabolites (Baille *et al.*, 2016). For instance, higher contents of rutin were reported in the populations of *Casearia sylvestris* (SW) growing in Savannah (poor soils and higher solar radiation) as well as those in higher altitudes (Silva *et al.*, 2006). Plants growing in higher altitudes were reported to contain high levels of flavonoids in *Calluna vulgaris* populations (Monschein *et al.*, 2010), *Arnica montana* (Perry, *et al.*, 2009) and *Quera robur* (Abdala-Roberts *et al.*, 2016). Higher contents of flavonoids and anthocyanins were reported in plants growing in higher latitude due to longer daylight periods and lower night temperature (Lätti *et al.*, 2010). Higher levels of phenolic compounds were also reported in Bearberry plants growing

47 African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

in the areas of higher radiation and temperature (Asensio *et al.*, 2020). The island populations of *Prunus Africana* have been overexploited for medicinal purposes than the inland populations (Kadu *et al.*, 2012).

S. henningsii is widely distributed in the tropical and subtropical areas in Africa. It occurs in wooded and open forests from sea level up to 2200 m altitude (Ruijter *et al.*, 2008). This may explain the wide range of chemical variation from individuals of this plant species from various geographical locations. Additionally, ethnobotanical studies also revealed that different parts of this plant species are used as sources of medicine in different geographical areas (Kuria *et al.*, 2012 and Alfred 2021). Plants exhibit differences in their chemical components not only according to their locality but their tissue types as well (Fraster *et al.*, 2007). Differences in phenolic compounds and activities observed according to tissue type were supported by traditional healers who used decoctions from specific parts of the plant for different symptoms (Fraster *et al.*, 2007). Inner bark is more preferred medicinally because it tends to show higher degree of antioxidant activity than leaves (McCune and Johns 2007; Fraster *et al.*, 2007; Rapinski *et al.*, 2014 and 2015). Ethnobotanical studies of *S. henningsii* revealed that the roots and the stem were the most widely used plant parts for medicinal purposes in the areas of study (Kuria *et al.*, 2012).

Further genetic variation in plants is partially reflected in the variation of concentrations and types of chemical constituents produced in a plant species growing in different geographical locations (Baille *et al.*, 2016). This is because the genetic makeup of plants provides the ability or inability to synthesis certain compounds (Chaplain, 1975; Baille *et al.*, 2016) and such potential depends on the differences in the environmental conditions prevailing in the geographical location of specific plant population (McCune and Johns 2007; Theis and Lerdau, 2003; Dixon and Paiva, 1995; Figueredo *et al.*, 2008; Fraster *et al.*, 2007).

In literature, there is no available information explaining association between genetic variation and the phytochemical constituents of *S. henningsii*. Evaluating the link between

48
African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

genetic diversity and chemical constituents of this plant will provide useful insight for designing strategies for sustainable utilization and conservation of this important plant species. Additionally, this information will also be useful in developing drugs from populations that show higher potential as a remedy for various ailments.

Genetic variation of S. henningsii from different populations in Kenya

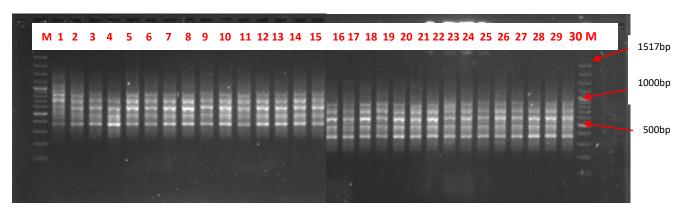
Genetic variation accounts for the chemical diversity in plants (Moore *et al.*, 2014). Genetic diversity promotes the adaptation of organisms to environmental conditions (Onda *et al.*, 2016). Environmental factors such as soil nutrients, temperature, water availability and light amongst others influence the genetic and chemical diversity of plant populations (Pacheco-Hernández *et al.*, 2021). These environmental conditions exert strong selective pressures that could influence the evolutionary course of plant populations (Pacheco-Hernández *et al.*, 2021). This natural phenomenon causes plant populations consisting of single species to show varied genetic patterns and chemical variations in different geographical locations (Chen *et al.*, 2015). Expression of genes for enzymes involved in production of secondary metabolites in plants varies and it's higher in plants subjected to areas characterized with stressful environmental conditions (Baille *et al.*, 2016). Plants adapt to new environmental conditions due to their genetic variation that may be associated with specific chemical compounds produced (Via and Conner, 1995; Younsi *et al.*, 2018). Maintenance of genetic diversity of plant species is vital for selecting the best fit (adaptable) individuals and self-sustaining populations (Reed and Frankham, 2003).

The effects of genetic variation in the biosynthesis of secondary metabolites in medicinal plants have been reviewed (Iannicelli et al., 2020). Variation in genetic and chemical constituents has been reported in various plants (Silva *et al.*, 2006; Khan *et al.*, 2017; Asensio *et al.*, 2020). High contents of flavonoids and anthocyanins were reported in plants growing in high latitude due to longer daylight durations and lower night temperatures (Lätti *et al.*, 2010). High contents of phenolic compounds in bearberry plants were also reported in plant

49 African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

species growing in areas of higher radiation and temperature (Asensio *et al.*, 2020). Altitudinal variations also influence production of secondary metabolites, for instance higher levels of flavonoids were reported in *Calluns vulgaris* populations growing in higher altitudes, *Arnica Montana* (Perry *et al.*, 2009), *Quera robur* (Abdala-Roberts *et al.*, 2016) and in *Casearia sylvestris* (SW). Silvia *et al.*, (2006) reported higher levels of rutin production in plants growing in high altitude and savannah regions.


A study on genetic diversity of *S. henningsii* was conducted by (Kuria *et al.*, (2018) using ISSR markers (Figure 2). Nine populations were selected from areas identified from the following places: Taita-Taveta (Mwache forest), Kilifi (Arabuko Sokoke forest), Narok (Tipilikwani forest in Talek near Maasai Mara game reserve), Baringo (Tugen hills), Kitui (Ndumooni hills), Marsabit (Marsabit forest reserve), Nyeri (Kabiruini forest), Kiambu (Karura forest) and Kajiado (Ngong forest). Each population comprised thirty individuals and therefore a total of two hundred and seventy individuals were randomly selected from the nine populations to conduct a study on genetic diversity of *S. henningsii* in Kenya. Nine markers that gave clear and reproducible bands were selected to help determine the genetic diversity among *S. henningsii* populations.

ISSR markers have been successfully used in other studies to determine the genetic diversity of medicinal plant species such as in *Croton heliotropiifolius* in (Rocha *et al.*, 2016), *Varronia curassavica* (Jacq.) in (Brito *et al.*, 2016), Rheum spp, in (Tabin *et al.*, 2016), *Withania Somnifera* in (Khan and Shah 2016) and *Croton tetrandenius* in (Almeida-Pereira *et al.*, 2017) amongst others.

50
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

Figure 2: ISSR marker profile of amplified loci of samples from Baringo population using primer 862. Lane (1-30) are samples, M:-Marker DNA 100bp ladder

In this study, ISSR detected and amplified a total of 96 loci among *S. henningsii* genotypes, all of which were polymorphic. The mean percentage of polymorphism detected was 43.40%. The most polymorphic population was Ngong with 51 polymorphic loci (53.12 %) while Baringo was the least polymorphic population with 28 polymorphic loci (29.17%) (Table 1). Similar results were reported in other studies on genetic diversity using ISSR markers. For example, a percentage polymorphism of 42.47% was revealed in *Costus pictus* (Naik *et al.*, 2017) and 59.13% percentage polymorphism in *Peganum harmals L.* (Zebarjadi *et al.*, 2016). High polymorphism (94.8%) was reported in *Croton tetradenius* (Almeida-Pereira *et al.*, 2017), 93.4% in *Ziziphus sphi-christi* 1. (Alansi *et al.*, 2016) and 76.1% in *Thuja sutchuenensis* (Liu *et al.*, 2013). Other studies reported low polymorphism using the same markers such as 24.36% in *Bruguiera gymnorrhiza* and 12.73% in *Heritiera fomes* (Dasgupta *et al.*, 2015).

Table 1 Genetic diversity analysis of nine populations of *S. henningsii* as revealed by ISSR markers in GenAlex software.

ISSR Markers									
Population	% P	N	Na	Ne	I	He	UHe	PSL	
	43.75	30.00							
Kitui	%	0	0.917	1.307	0.251	0.172	0.175	5.000	

African Journal of Science, Technology and Engineering

	41.67	30.00						
Marsabit	%	0	0.865	1.255	0.219	0.147	0.149	1.000
	29.17	30.00						
Baringo	%	0	0.688	1.159	0.145	0.096	0.097	0.000
	39.58	30.00						
Nyeri	%	0	0.802	1.282	0.232	0.159	0.162	0.000
	42.71	30.00						
Narok	%	0	0.885	1.271	0.230	0.156	0.158	2.000
	51.04	30.00						
Karura	%	0	1.063	1.376	0.299	0.207	0.211	2.000
	53.13	30.00						
Ngong	%	0	1.115	1.315	0.273	0.183	0.186	2.000
	37.50	30.00						
Jilore	%	0	0.781	1.235	0.203	0.137	0.139	0.000
	52.08	30.00						
Taveta	%	0	1.052	1.298	0.267	0.177	0.180	2.000
	43.40	30.00						
Mean	%	0	0.907	1.278	0.236	0.159	0.162	

N= population size, PPL= population polymorphic loci, % P= percentage polymorphism, Na= Number of observed alleles, Ne= number of effective alleles, H= Nei's genetic diversity, I= Shannon information indices, He= expected Heterozygosity, UHe= unbiased expected Heterozygosity, PSL=population specific loci.

According to Nei (1978), percentage polymorphism is not a significant measure of genetic variation despite being the most commonly used indicator of genetic variation in many studies on natural population and that the parameter of genetic diversity (H) is more

52 African Journal of Science, Technology and Engineering

appropriate. The values for genetic diversity (H) and Shannon index (I) ranged from (0.0955 – 0.1828 and 0.1448-0.2728 respectively according to a study conducted by Kuria *et al.*, (2018) (Table 2). According to genetic diversity and Shannon index values this study showed that the Ngong population was the most diverse while Baringo was the least diverse. These values indicate a low genetic (allelic) diversity for *S. henningsii* populations. The results obtained could be attributed to the pollination, propagation and seed dispersal mechanisms. **Table 2** Genetic diversity analysis of nine populations of *S. henningsii* has revealed using

Table 2 Genetic diversity analysis of nine populations of *S. henningsii* has revealed using ISSR markers in PopGene software

ISSR Markers							
Population	N	PPL	% P	Na*	Ne*	H*	I *
Kitui	30	42	43.75	1.4375	1.3067	0.1720	0.2514
Marsabit	30	40	41.67	1.4167	1.2548	0.1469	0.2189
Baringo	30	28	29.17	1.2917	1.1594	0.0955	0.1448
Nyeri	30	38	39.58	1.3958	1.2823	0.1590	0.2317
Narok	30	41	42.71	1.4271	1.2715	0.1558	0.2303
Karura	30	49	51.04	1.5104	1.3764	0.2071	0.2994
Ngong	30	51	53.12	1.5312	1.3148	0.1828	0.2728
Jilore	30	36	37.5	1.3750	1.2346	1.1366	0.2030
Taveta	30	50	52.08	1.5208	1.2977	0.1773	0.2673
Overall	270	96	100	2.0000	1.4683	0.2889	0.4473

Key words:

N= population size, PPL= population polymorphic loci, % P= percentage polymorphism, Na = Number of observed alleles, Ne = number of effective alleles, H= Nei's genetic diversity, I = Shannon information indices.

53
African Journal of Science, Technology and Engineering

This plant species has cleistogamous reproduction (self-pollinating) (Bruce and Lewis, 1960). It bears small and brightly colored flowers which indicate a high possibility of entomophilous pollination. Insects transfer pollen for short distance mainly on flowers in a single tree resulting in the production of inbred seeds with poor germination (Bryndum and Hedgegart, 1969; Mathew *et al.*, 1987; Indira and Mohandas, 2002; Tangmitcharoen *et al.*, 2009). *S. henningsii* is also known to have restricted geographical zones within its natural environment. All these factors may have contributed to the low genetic diversity due to the narrow and common gene pools in the populations of this plant species.

Analysis of molecular variance (AMOVA) revealed a higher genetic variation p < 0.001 (58%) among than within (42%) the *S. henningsii* provenances (Figure 3). This was possibly due to the self-pollinating nature of the species. Khan and Shah, (2016) reported a higher genetic variation among populations than within population in *Withania somnifera*, a self-pollinating plant species. Genetic drift may have also contributed to the higher genetic variation due to loss of some alleles through successive generations. The preserved alleles may be responsible for the adaptation of this plant species in its specific but wide geographical distribution range from the sea level up to about 2220 m above sea level. The geographical locations vary in the environmental conditions hence the individuals from the different geographical areas (populations) cope up differently by producing various chemical compounds that aid in the adaptation process (Baille *et al.*, 2016). This may explain the wide range of chemical constituents produced by this plant species.

Habitat fragmentation and reduction in population size in the wild medicinal plants as a result of over exploitation is one of the main causes of increased genetic differentiation among populations and reduced gene flow between populations (Panda *et al.*, 2015). In the study conducted by (Kuria *et al.*, 2018), Kitui, Taita–Taveta and Nyeri populations revealed

54
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

higher genetic variation due to the reduction in gene pool within these populations as a result of over exploitation for medicinal purposes.

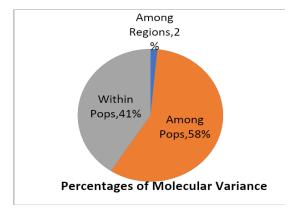
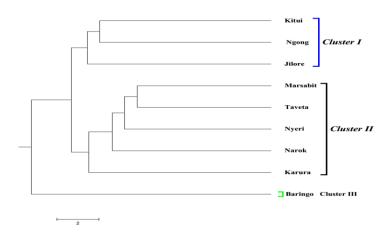
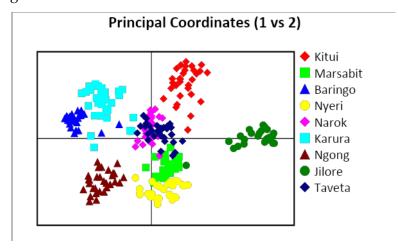



Figure 3 Percentage of Molecular variance of ISSR data


Cluster analysis of ISSR data based on the Nei's, (1978), unbiased genetic distance generated a dendrogram with three major groups. Cluster I consisted of three populations namely Kitui, Ngong and Jilore. Cluster II consisted of five populations (Marsabit, Taveta, Nyeri, Narok and Karura) and cluster III consisted of Baringo population (Kuria *et al.*, 2018) (Figure 4). The Principal Coordinate Analysis confirmed the results of the clustering analysis where there was dispersion in the genetically diverse populations (Figure 5). However, the UPGMA and PCA analyses did not reveal a clear pattern of clustering and the geographical trend among the populations (Figure 4 and 5). Therefore, genetic divergence did not match to the geographical places of collection. The lack of correlation between genetic distance and geographical locations indicate that genetic drift has played a significant role in shaping the genetic structure and variation among populations of *S. henningsii* (Fischer *et al.*, 2000).

African Journal of Science, Technology and Engineering

Figure 4 UPGMA clustering analysis of nine *S. henningsii* populations based on Nei's (1978) unbiased genetic distance

Figure 5 a three dimensional plot of the Principal Coordinate Analysis (PCA) of ISSR data showing the clustering of *S. henningsii* populations.

RECOMMENDATIONS AND CONCLUSIONS

Strychnos henningsii is a traditional medicinal plant species widely used in tropical Africa. Overview of this plant species has revealed that it has been used as a remedy for various ailments including rheumatism, gastrointestinal complications, abdominal pains, syphilis, among others in African traditional medicine. It is a source of several important chemical constituents which could possibly be responsible for its various pharmacological activities

56 African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

exhibited by this plant species. Genetic diversity study revealed higher genetic variation among the populations than within the population. However, there are no reports describing association between the variation in genetic and chemical constituents of this plant species across its geographical range. There is therefore a need for further studies to provide more insights in the conservation strategies of genotypes that show superiority in their genetic and chemical constituent's variability. These genotypes can serve as sources of raw material for the development of new drugs that could be useful in treatment of chronic diseases in both medical and veterinary institutions.

References

Abdalla-Roberts L., Rasmann S., Berny-Mier Y., Terán J.C., Covelo F., Glauser G. M. (2016). Biotic and abiotic factors associated with altitudinal variations in plant traits and herbivory in dominant oak species. American Journal of botany 103: 2070-2078.

Alansi S., Tarroum M., Al-Qurainy F., Khan S., Nadeem M. (2016). Use of ISSR markers to assess the genetic diversity in wild medicinal Ziziphus spina-christi (L.) Wild collected from different regions of Saudi Arabia, Biotechnology and Biotechnological Equipment. 30(5): 942-947.

Alfred Maroyi (2021). Evaluation of medicinal uses, phytochemistry and pharmacological properties of Strychnos henningsii Gilg. (Strychnine). International Journal of Scientific and Technological Research 10: 10-18.

Almeida M.C., Pina E.S., Hernandes, C. *et al.* (2018). Genetic diversity and chemical variability of Lippia spp. (Verbenaceae). BMC Res Notes **11:** 725 https://doi.org/10.1186/s13104-018-3839-y.

Angenot L., Tits M. (1981). Isolation of a new alkaloid (O-Acetyl Retuline) and a triterpenoid (Friedelin) from Strychnos henningsii of Zaire. Planta Medica 41(3): 240-243.

Asensio E., Vitales D., Pérez I., Peralba L., Viruel J., Montaner C., Vallês J., Garnatje T., Sales E. (2020). Phenolic compounds contents and genetic diversity at population level across the

57
African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

natural distribution range of bearberry (*Arctostaphylos uva-ursi*, Ericaceae) in the Iberian Peninsula. 9(9):1250. doi: 10.3390/plants 90911250.

Bailie A., Renaut S., Uhalijoro, E., Guerrero-Anajco J.A., Saleem A., Haddad P., Cuerrier A. (2016). Phytogeography and genetic variation in Sorbus a traditional antidiabetic medicine - adaptation in action in both a plant and a discipline. Peer Journal 4e2645. Doi 10.7717/peerj.2645.4(6)

Beentje H.J. (1994). Kenya Trees, Shrub and Lianas. Nairobi: National Museums of Kenya.Pp 325.

Brito, F.A., Nizio, D.A.C., Silva, A.V C., Diniz, LEC. (2016). Genetic diversity analysis of *Varronia curassavica* (Jacq.) accessions using ISSR markers. *Genetic Molecular Research* **15:** 1-10. http://dx.doi.org/10.4238/gmr.15038681.

Bruce, E.A., Lewis, J. (1960). *Loganiaceae* in: Hubbard C.C., Milne- Redlead E (Eds) London: Flora of tropical East Africa.Pp 225.

Bryndum, K., Hedgegart, T. (1969). Pollination of teak (*Tectona grandis*). Silvae Genetica **18**: 77-80.

Chaplain J.F. (1975). Genetic influence on chemical constituents of tobacco leaf and smoke. Tobacco research Laboratory. Agriculture Research service. N. Carolina U.S.A.

Chen, J., Xu, Y., Wei, G., Liao, S., Zhang, Y., Huang, W., Yuan, L., Wang, Y. (2015). Chemotypic and genetic diversity in *Epimedium sagittatum* from different geographical regions of China. *Phytochemistry* **116**: 180–187.

Dasgupta, N., Nandy, P., Sengupta, C., Da, S. (2015). RAPD and ISSR marker mediated genetic polymorphism of two mangroves *Bruguiera gymnorrhiza* and *Heritiera from* Indian Sundarbans in relation to their sustainability. Physiology and Molecular Biology of Plants 21 (3), 375–384. *doi:* 10.1007/s12298-015-0308-0.

De-Ruijters A. (2008). *Strychnos henningsii* (Gilg) in Schmelzer G.H. and Gurib-Fakim A (Eds), *PROTA* (Plant Research of Tropical Africa) **11:** Medicinal Plant 1. Backhuys Publishers, Leiden, the Netherlands, 570-571.

58
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

Dixon R.A., Gang D.R., Charlton A. J., Fiehn O., Kuiper H.A., Reynolds T.L., et al. (2006). Application of metabolomics in agriculture. *Journal of Agricultural Food Chemistry*. **54:**8984–94.

Dixon R.A., Paiva N.L. (1995). Stress-induced phenylpropanoid metabolism. *The Plant Cell* 7:1085-1097 *DOI* 10.1105/tpc.7.7.1085.

Figueiredo A.C., José G.B., Luis G.P., Johannes J.C.S (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. *Flavour and Fragrance Journal* **23**:213-226 *DOI* 10.1002/ffi.1875.

Fischer, M., Husi, R., Prati, D., Peintinger, M., Van Kleunen, M., Schmid, B. (2000). RAPD variation among and within small and large populations of the rare clonal plant *Ranunculus reptans* (Ranunculaceae). *American Journal of Botany* **87**: 1128–1137.

Fraser, M.H., Cuerrier A., Haddad, P.S., Arnason, J.T., Owen, P.L., Johns, T. (2007). Medicinal metabolite production in plants: Volatile components and essential oils. *Flavour and Fragrance Journal* **23**: 213-226.

Gachathi, M. (2007). Kikuyu Botanical dictionary. A guide to plant names, uses and culture values (2nd Ed.), Tropical Botany **143**: 212.

Hartmann U., Sagasser M., Mehrtens F., Stracke R., Weisshaar B. (2005). Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue specific activation of phenylpropanoid biosynthesis genes. *Plant Molecular Biology* **57(2):**155-171 *DOI* 10.1007/s11103-004-6910-0.

Hutchings, A. (1989). A survey and analysis of traditional medicinal plants as used by the Zulu, Xhosa and Sotho. *Bothalia* **19**: 111–123.

Hutchings, A. (1996). Zulu medicinal plants. Pietermaritzburg's Natural University Press. Pp 205.

Iannicelli, J., Guariniello, J., Tossib, V.E., Regalado, J. J., Di Ciaccioa, L., van Barene, C.M., Pitta Álvarez, S.I., Escandón, A.S. (2020). The "polyploid effect" in the breeding of aromatic and medicinal species. *Scientific. Horticulture.* **26**: 108854.

Indira, E.P., and Mohandas, K., (2002). Intrinsic and extrinsic factors affecting pollination and fruit productivity in teak (*Tectona grandis Linn*. f.). *Indian Journal of Genetics* **63**: 208-214.

59 African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

Kadu C.A.C., Parich A., Schuelar S., Kanrad H., Muluvi G.M., Dog-mating O., Muchugi A., Williams V. I., Ramamonjisoa C., Hafashimana D., et al., (2012). Bioactive constituents in Prunus Africana geographic variation throughout Africa and association with environmental and genetic parameters. Phytochemistry 83: 70-78.

Kareru, P.G. Kenji, G.M., Cachanja, AN., Keriko, J.M., Mungai, G. (2007). Traditional medicines among the Embu and Mbeere people of Kenya. Journal of Traditional, Complementary and Alternative medicines (AJTCAM) 4(1): 75-86.

Khan, S., Shah, R.A. (2016). Assessment of genetic diversity among Indian Ginseng Withania somnifera (L.) Durnal using RAPD and ISSR markers. Research in Biotechnology 7: 1-10.

Khan M., Feroza H.W., Israr Ahmed., Ikram Mohamad., Sahib Gul-Afridi., Muhamad Hamid S.W., Mustafa Kamal S.S. (2017). Assessment of genetic diversity and phytochemical analysis of Nigella sativa genotypes from Pakistan. Asian Journal Biological Sciences **10:** 56-63.

Kuria, M.W., Njenga, P.K., Ngumi, V.W. (2012). Ethnobotanical studies of Strychnos henningsii in five (Gilg.) natural habitats in Kenya. International Journal of medicinal Plant research 1(16): 063-074.

Kuria, M. W., Ngumi, V.W., Njenga, P.K., Wangai L.N., Magiri E. (2018). Assessing genetic diversity of an endangered medicinal plant Strychnos henningsii (Gilg.) in nine populations in Kenyans Counties as revealed by ISSR Markers. International Journal of Innovative Research and Knowledge 3(12): 81-94.

Lätti, A.K., Riihinen K.R., Kainulainen P.S. (2010). Analysis of anthocyanin variation in wild populations of berberry (Vaccinium myrtillus L.) Journal of Agriculture and Food Chemistry 58: 427-433.

Liu, J., Shi, S., Chang, E., Yang, W., Jiang, Z. (2013). Genetic Diversity of the critically endangered Thuja sutchuenensis as revealed by ISSR Markers and the Implications for Conservation. International Journal of Molecular Sciences **14:** 14860-14871; doi: 10.3390/ijms140714860

60
African Journal of Science, Technology and Engineering

Volume 4 (2) 2024

Mathew, G., Mathew, P.K., Mohandas, K. (1987). Preliminary studies on Insects' visitors to teak (Tectona grandis L.f.) inflorescence in Kerala, India. Indian Forester 113: 61-64.

Maundu, P., Tengäs, T. (2005). Useful Trees and Shrubs of Kenya. Technical handbook No. 35. Nairobi, Kenya: World Agroforestry Center-Eastern and Central Africa regional Program (ICRAF-ECA). Pp 400.

McCune, L.M., Johns, T., (2007). Antioxidant activity relates to plant part, life form and growing condition in some diabetes remedies. Journal of Ethnopharmacology **112**:461-469 DOI 10.1016/j.jep.2007.04.006.

Moore, B.D., Andrew, R.L., Külheim, C., Foley, W.J. (2014). Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytology **201**: 733–750.

Monschein, M.; Iglesias, J.; Kunert, O.; Bucar, F (2010). Phytochemistry of heather (Calluna vulgaris (L.) Hull) and its altitudinal alteration. Phytochem. Rev., **9**, 205–215.

Naik, A., Prajapat, P., Krishnamurthy, R., Pathak, J.M. (2017). Assessment of genetic diversity in Costus pictus accessions based on RAPD and ISSR markers. Biotechnology **7(1)**: 70-75. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a smaller number of individuals. Genetics **89**: 583-590.

Ngugi M.P., Murugi N.J., Kibiti M.C., Ngeranwa J.J., Njue M.W., Maina D., Gathumbi K.P., Njagi N.E. (2011). Hypoglycemic activity of some Kenyan plants traditionally used to manage diabetes mellitus in Eastern province. Diabetes and Metabolism 2: 8.

Njire M.M., Bundambula N, M., Kiiru J.N. (2010). Antimicrobial effects of selected herbal extractson multidrug resistance gram negative bacteria strains. Proceedings of 2010 JKUAT Scientific, Technological and Industrialization Conference Pp 305.

Ogeto J.O., Juma F.D., Muriuki G. (1984). Practical therapeutics: Some investigations of the toxic effects of the alkaloids extracted from Strychnos henningsii (Gilg) 'muteta. East African Medical Journal 61: 427-432.

Onda, Y., Mochida, K. (2016) Exploring genetic diversity in plants using high-throughput sequencing techniques. Current Genome **17:** 358–367.

61
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

Oyedemi, S.O., Bradley, G., and Afolayan, A.J., (2009). Ethnobotanical survey of medicinal plants used for the management of Diabetes mellitus in the Nkonkobe municipality of South Africa. Journal of medicinal plants research 3(12): 1040-1044.

Oyedemi, S.O., Bradley, G., Afolayan, A.J. (2010a). In vitro and in vivo antioxidant activities of aqueous extract of Strychnos henningsii Gilg. African Journal of Pharmacology **4:** 70-78.

Oyedemi, S.O., Koekemoer, T., Bradley, G., Van de Venter, M., Afolayan, A. (2013). In vitro anti-hyperglycemia properties of the aqueous stem bark extract from Strychnos henningsii (Gilg.). International Journal Diabetes in developing countries 33(2): 120-127.

Pacheco-Hernández, Y., Villa-Ruano, N., Lozoya-Gloria, E.;Barrales-Cortés, C.A., Jiménez-Montejo, F.E., Cruz-López, M.D.C. (2021). Influence of Environmental Factors on the Genetic and Chemical Diversity of Brickellia veronicaefolia Populations Growing in Fragmented Shrub Lands from Mexico. PLANTS 10: 325. https://doi.org/10.3390/plants10020325.

Palgrave, K.C. (1988). Trees of South Africa (5th Ed.) Cape Town: Struik publishers. Panda, S., Naik, D., Kamble, A. (2015). Population structure and genetic diversity of perennial medicinal shrubs from Plumbago. AOB PLANTS 7 plv048; doi:10.1093/aobbpla/plv048.

Penelle, J., Tits, M., Christen, P., Molgo, J., Brandt, V., Frederich, M., Angenot, L. (2000). Quaternary indole alkaloids from the stem bark of Strychnos guianensis. Phytochemistry **53**: 1057-1066.

Perry N.B., Burgess E.J., Rodriguez G., Romero M.A., Franco R., Lòpez Mosquera E., Smallfield B. M., Joyce N.T., Littlejohn R. p. (2009). Sesquiterpene Lactones in Arnica montanai Helenalin and dihydrohelenalin chemotypes in Spain. Plant Medicine 75: 660-666.

Pujol, J. (1993). Naturafrica-the herbalists' handbook 4th ed. Jean Pujol Natural Healer Foundation, Durban Pergamon press, Pp 270.

Rapinski M., Liu R., Saleem A., Arnason J.T., Cuerrier A. (2014). Environmental trends in the variation of biologically active phenolic compounds in Labrador Tea, Rhododendron groenlandicum, from Northern Quebec, Canada. Botany **92**:783-794 DOI 10.1139/cjb-2013-0308.

62
African Journal of Science, Technology and
Engineering

Volume 4 (2) 2024

Rapinski M., Musallam L., Arnason J.T., Haddad P., Cuerrier A. (2015). Adipogenic activity of wild populations of Rhododendron groenlandicum, a medicinal shrub from the James Bay Cree traditional pharmacopeia. Evidence-Based Complementary and Alternative Medicine 2015: Article 492458 DOI 10.1155/2015/492458.

Reed, D.H., Frankham, R. (2003). Correlation between Fitness and Genetic Diversity. Conservation Biology 17: 230–237.

Rocha T.O., Freitas J.S., Santos E.S.L., and Scaldaferri M.M. (2016). Estimate of genetic diversity in Casting (Croton heliotropiifolius) based on molecular markers. African Journal of Biotechnology 15: 518-523

Silvia M.A. S. Da., Ming L.C., Pereira A.M.S., Bertoni B.W., Bartistini A.P., Pereira P. S. (2006). Phytochemical and genetic variability of Casearia sylvestris SW. from Sao Paulo State Atlantic forest and Cerrado populations. Rev. Bras. Plant Medicine Botucatu 8: 159-166.

Tabin, S., Kamili A.N., Ganie S.A., and Zargar O. (2016). Genetic diversity and population structure of Rheum species in Kashmir Himalaya based on ISSR markers. Flora 223: 121-128.

Tangmitcharoen, S., Tasen, W., Owen, J.N., and Bhodthipuks J. (2009). Fruit set as affected by pollinators of teak (Tectona grandis L.f.) at two tree spacing in a seed orchard. Songklanakarin Journal of Science and Technology **31**: 255-259.

Theis N., Lerdau M. (2003). The evolution of function in plant secondary metabolites. International Journal of Plant Sciences **164**: S93-S102 DOI 10.1086/374190.

Tirop E. K., Maina N.N., Njenga P.K., Magiri E., Ngumi V.W. (2018). Evaluation of toxicity of Strychnos henningsii (Gilg) Loganiaceae leaves and roots aqueous extracts in mice. European Journal of medicinal plants **25**: 1-11.

Tirop E. K., Ngumi V.W., Njenga P.K., Magiri E., Maina N.N. (2019). Antimicrobial activity of Strychnos henningsii (Gilg) Loganiaceae. Jomo Kenyatta university of Agriculture and Technology **19**: 79-83

Tits, M., Damas, J., Qurtin-Leclercq, J., Angenot, L. (1991). From ethnobotanical uses of Strychnos henningsii to anti inflammatories, analgesics and antispasmodics. Journal of ethnopharmacology 34 (2-3): 261-267.

63
African Journal of Science, Technology and
Engineering

Van Wyk, B.E., Bosch Van, O., Nigel, G. (1997). Medicinal plants of South Africa. (2nd Ed) Pretoria, South Africa. Pp 244-245.

Via, S., Conner, J. (1995). Evolution in heterogeneous environments: Genetic variability within and across different grains in Tribolium castaneum. Heredity **74**: 80–90.

Watt, M.P., and Breyer, N.G. (1962). Medicinal and poisonous plants of Southern and Eastern Africa. Livingstone: Edinburgh. Pp 225.

Younsi, F., Rahali, N., Mehdi, S., Boussaid, M., Messaoud, C. (2018). Relationship between chemotypic and genetic diversity of natural populations of Artemisia herba-alba Asso growing wild in Tunisia. Phytochemistry **148**: 48–56.

Zebarjadi A., Ahmadvandi H.R., Kahrizi D., Chenghamirza K. (2016). Assessments of genetic diversity by application of inter-simple sequence repeat primers on Iranian Harmal (Peganum harmala L.). Germplasm as an important medicinal plant. Journal of Applied Biotechnology Reports **3 (3):** 441-445

64
African Journal of Science, Technology and
Engineering