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Abstract

Direction finding is a key area of sensor array processing which is encountered in a broad range
of important engineering applications. These applications include wireless communication, rada
and sonar, among others. This work compares estimation accuracy of 3-configurations (based on
the inner radius variation and constant outer radius) of a uniform 2-ring concentric planar array
in direction finding via the Cramer-Rao bound derivation and analysis. The 3-configurations’
estimation accuracy is articulated to their respective sub-configurations based on the sensors
distribution in each ring. The sub-configurations use equal overall number of sensors (multiple of
4) but with 60% - 40% distribution, 50% - 50% distribution and 40% - 60% distribution on the
inner-outer rings respectively. It is found that the estimation accuracy increases as the inner
radius approaches the outer radius and thus configuration three (where the inner radius equals
three-quarters of the outer radius) has the best precision in direction finding compared to
configuration two (where the inner radius equals half of the outer radius) and configuration one
(where the inner radius equals one-quarter of the outer radius). Furthermore, based on the sub-
configurations (where there is varying sensor distribution along the two rings), sub-configuration
three (where 40% of the sensors are distributed along the inner radius and 60% of the sensors are
distributed along the outer radius) is found to have the best estimation accuracy compared to the
other two sub-configurations (50% - 50% and 60% - 40% distributions, respectively). It is
observed that the closer the inner radius approaches the outer radius and/or the lower the inner-
outer radius’ sensor ratio, the better the estimation accuracy. It is thus recommended that all
sensors should be distributed along the outer radius for better estimation accuracy. These findings

would help direction finders such as engineers to economically utilize a given number of sensors.
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Introduction

Direction finding (DF) is also termed as direction-of-arrival (DoA) estimation problem. It
basically refers to the problem of estimating angles-of-arrival (AoA) of an incident signal
from an emitter (for instance plane wave or multiple plane waves) [1]. DF is a crucial
technique in array signal processing following its wide-spread fields of applications
especially in engineering. Some application areas include: radar, sonar, wireless
communication, medical diagnosis and treatment, electronic surveillance, radio astrology
[2]-[4], position location and tracing systems [5]. This is simply because it is a major
method of location determination, in security services especially by reconnaissance of
radio communications of criminal organization and in military intelligence by detecting
activities of potential enemies and gaining information on enemy’s communication order.
Due to its diverse applications and difficulty in obtaining optimum estimator, the topic
has attracted significant attention over the last several decades.

DF problem has so far been solved by employing various methods for both near-field and
far-field sources emitting signal which is received by an array of sensors [6]. The methods
aim to estimate the azimuth-polar angles-of-arrival. Some of the methods which have
been employed in DF are: Maximum likelihood (ML) method [7], MUSIC (MUltiple
Slgnal Classification) [8], ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Technique) [9], Cram’er-Rao Bound (CRB) [4], among other techniques. The
Cram’er-Rao Bound which is utilized in this work has been found to be the most accurate
technique in DF for it is the lowest error bound that any unbiased estimator can achieve

and the simplest due to its simplicity in computations.
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The aforementioned algorithms solve DF problem based on sensors either randomly
distributed or arranged in a desired geometric pattern. The advantage of adopting any
sensor-array geometry is mainly to improve the estimation performance. Among the
many geometries that have been used in DF, circular and concentric circular geometries
have a little bit more unique advantages which include: offering full rotational symmetry
about the origin, flexibility in array pattern synthesis and design both in narrow band
and broad band beam-forming applications, provision of almost invariant azimuth angle
coverage and they can also yield invariant array pattern over a certain frequency band
for beam-forming in 3-dimensions [17]-[21]. Concentric circular array geometries alone
offer less mutual coupling effect due to their significant structure of the ring array [23],
they yield smaller side lobes in beam-forming [22]-[26], provide higher angle resolution
compared to uniform circular array geometries and requires less area for the same

number of sensor elements [27] and they increase array’s spatial aperture [17]-[21], [28],

[29].

Despite the fact that the concentric circular arrays increase array’s spatial aperture, the
strategy in which the aperture is widened is a great concern as well as the number and
the distribution of the sensors along the aperture. This now raises an important question
that, how would the proportional variation of the inner radius while the outer radius is
held constant affect the estimation accuracy of a 2-ring concentric planar array in
direction finding? and how would varying the inner radius alone translate to sensors
distribution on the inner-outer rings for the precision in direction finding? This work now
proposed 3-configurations and their respective sub-configurations of a 2-ring concentric
planar array which maintains all the advantages of concentric circular arrays and uses
minimal number of sensors with an inter-spacing not exceeding half a wavelength. The
three configurations are based on the proportional variation of the inner ring’s radius as

the outer ring’s radius is held constant while the respective sub-configurations are based
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on the distribution of sensors on the inner-outer rings in which the distributions are in
60%—40%, 50%—-50% and 40%—-60%. For the configuration one, the inner radius is a
quarter of the outer radius, configuration two’s radius is ahalf of the outer radius and
configuration three’s radius is three quarters of the outer radius. The sub-configurations
use equal overall number of sensors (multiple of 4) but with 60% —40% distribution, 50%
—50% distribution and 40% — 60% distribution on the inner-outer rings respectively. The
paper compares the estimation accuracy among the three configuration and their
respective sub-configurations in DF via the derivation and analysis of their Cramer-Rao
bounds.

Finally, the paper consists of five sections in which Section I is the introduction, Section
I presents the array response vector, Section III gives the Cram er-Rao bound review and
derivation, Section IV presents the Cram’er-Rao bound analysis for the 3-sub-

configuration based on the sensors distribution, and Section V gives the conclusion.

IT Array Response Vector (ARV)

II-A. Review Basics of ARV Using the General 2-Ring Concentric Planar array of
Isotropic Sensors

Consider two concentric circles of radii R;,; and R, sharing a common center at the

Cartesian origin and lying on the x-y plane. See Figure 1.
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An Incident Source

Figure 1: A general two-ring concentric planar array of isotropic sensors lying on the

horizontal x-y plane and centered at the Cartesian origin.

The inner and the outer rings have L;,,; and L., number of isotropic sensors arranged on
the rings” circumference respectively with equal inter-sensor spacing between any two
adjacent sensors. The location of the ¢-th sensor in terms of the Cartesian coordinates

equals

T
2w (Line—1 . 2m(fine—1
[Rintcos—( it ),Rintsm—( it ),0] , 1< i <Lint
p{ _ int int
= T
2T (Lopt—1 . 2T (Loxt—1
[Rextcos —(Le’“ ),Rintsm—(Le“ ),0] , 1< ot < Loyt

ext ext

where T denotes the transposition.
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Consider an incident signal from a far-field emitter impinging on the origin at a polar-
azimuth angles-of-arrival of 8 — ¢ where 0 € (0,7) and ¢ € (0,27). Then, the 2-ring’s array

response vector equals

Aint (0' (nb)

a0.9) =[5 %) @

where the ¢-th entries fora;,, anda,,, are respectively given as:

[0 (6, )], = exp {j ZRnt sin(9)cos (¢ — T} (3)

Lint

For ;,; = 1,2, Lin, and

[a.,.:(8, )], = exp {j %sin(@)cos (qb — —Zn%"t_l))} (4)

Lext

for €oxe = 1,2, Loye. In the above entries, 1 is the wavelength of the incident signal.

II-B. ARV of the Proposed 3-Configurations of the 2-Ring Concentric Planar Array
The 3-configurations of the 2-ring concentric planar array proposed in this work is based
on the variation of the inner ring’s radius in relation to the outer ring’s radius while
holding the latter radius constant. In all the configurations, the outer radius is hereby
taken as 81. Consider the illustration of the configurations as follows:
II-B.1. Configuration One (C-1): This configuration has the following properties. See
tig 2.
i.  Reye =81
H. Rine = 7 (Rexe) = 24

With reference to Eq.(3)- Eq.(4) in Eq.(2), the array response vector for the C-1 is given

as
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_2m (fine—1)

exp {j4nsin(9)cos (¢)
exp {j16nsin(0)cos (¢)

Lint )}' 1< fint = Lint

2 (Loxt—1
— M)}' 1< fext < Lext

aC—l (6, ¢) = (5)

Lext

An Incident Source

Figure 2: The proposed configuration one.  and a symbolizes L;,; and L, respectively.

II-B.2. Configuration Two (C-2): This configuration has the following properties.
i.. Rext = 82,
. Ry = %(Rext) = 41

Referring to Eq.(3)-Eq.(4) in Eq.(2), the array response vector for the C-2 equals

exp {j8nsin(0)cos ((/) - %)}, 1< ¥t <L
ac(0,¢) = . . 21 (Loxt—1) (6)
exp {]16nsm(9)cos ((/) - T)}' 1< oyt < Loyt
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An Incident Source

\

Figure 3: The proposed configuration two. f and @ symbolizes L;,; and L., respectively

II-B.3. Configuration Three (C-3): This configuration has the following properties. See
tig. 4.
i.  Rey =84
H. Rine = 5 (Rexe) = 64
With reference to Eq.(3)-Eq.(4) in Eq.(2), the array response vector for the C-3 equals

exp {lensin(B)cos (d) — M)}, 1<% < Lin:

Lint

exp {j16ﬂsin(9)cos (d) - M)}, 1< "topt < Loyt

Lext

Ac_3 (61 d)) = (7)
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An Incident Source

Figure 4: The proposed configuration three. f and a symbolizes L;,, and

Lyt respectively.

III The Cram’er-Rao Bound Review and Derivation
III-A. The Statistical Data Model
Let’s consider a simple noise-corrupted replica of collected dataset at time instant m given
by

z(m) = a(8,¢p)s(m) + n(m) 8)
where n(m) is modeled as a complex-valued zero-mean additive white Gaussian noise
(AWGN) with a prior known variance of o7, and s(m) is a scalar incident signal modeled
as a white Gaussian complex-valued with a prior known variance of ¢Z [1], [6], [10], [12]-

[16], [18]. Then, for multiple-discrete-time instances M, the dataset is represented as

2= [z, (2(2)), -, ZMDYT = s ® a(9,¢) + 7 ©)
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where superscript T denotes transposition, @ denotes the Kronecker product [12], [15]
and
s = [s(1),5(2),+,s(MD]”
i = [{n(D}7, {n(2)}7, -, {n(M)}T]".

III-B. The Fisher Information Matrix

The Fisher information matrix measures the amount of information that an observable
random variable carries about an unknown parameter [31], [32]. Suppose the two
parameters to-be-estimated are collected as entries of the 2 X 1 vector ¢ € [6, ¢]. Then the
Fisher information matrix (FIM) F(¢) has a (k,r)th entry equal to (see (3.8) on page 72 of
[30])

[F(&)]i, = 2Re {[;—;]H r-i ;’7"} +Tr {r-l [%]H r-i (%r} (10)

where Re{} signifies the real-value part of the entity inside the curly brackets, Tr{}
denotes the trace of the entity inside the curly brackets, the superscript ¥ indicates
conjugate transposition.
In equation (10),
u=E[zZ] = s® a(b,¢) (11)
r=Ee[Z-mwiz-w'] = U%I(Lint+Lext)M (12)
are the mean and the covariance matrix of the data model where E[] represents the
statistical expectation of the entity inside the square brackets and I, ., ,)»u Symbolizes
an identity matrix of size (Lint + Lext)M. Clearly, I in Eq,(12) is functionally independent
of both 6 and ¢, and thus the second term of (10) equals zero. Hence Eq.(10) reduces to

2 ou1" o
[F(f)]k,r=a—szRe{% 5 }

Where
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) aa(8, »)1” 9a(6, )]
ouy" ou [ 0a@,9)"[  3a(0,9)
&k afr d |
H -
_ s @ “aaa(e, ®) [aage, ¢)}
=Mq2 Ek fr i
_ da(6,9) da(6,¢)
= Moz [2C]" [2e0))
Hence,
R 9a0,9)1" [9a(0,9)
[F)lir = 2MZ Re {[2202)] [20.0)]} (13)
The Fisher information matrix equals
Foo Fog
FO =0 2
¢ Fo0 Fop

the inverse of which gives Cram’er-Rao bound of 6 and
¢:

[CRB(H) ] _ Fg g F9,¢]_1

(14)
Iii-C. The Cram Er-Rao Bound Derivation
Here we first derive the Cram’er-Rao bound for the general 2-ring concentric planar array

then use the consequent results to give the Cram’er-Rao bounds for the 3-configurations.

From Eq.(2), we have
T
9a(0.9) _ [[2am 0" [2acx(0.0)]"
%k [[ 9 [ 9%k ] ] ’ (15)
where the £-th entries of a‘"at;e ) andaa%;e'@ for €y, = 1,2, Ly and £,y =

1,2,-++ Lgyy, are respectively given by

[Pums®0] = jor Rt cos(0)cos (¢ — 2n ) x (6, ¢) (16)
int
and
[6aext(9 4’)] — ]27-[ “t cos(6)cos ((p — ZE{)'ELXL) x a(b, ) 17)
ext
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.. . . 9aint(6,¢) 9aext(6,9)
Similarly, the respective ¢-th entries of—" and—= p equals
9aine(0.8)] _ . Rine o time-1
[—a¢ ) = j2m = cos(6)cos (d) 21 -~ ) x a(6, ) (18)
and
0aext(6,9) - Rext _ Lext—1
[T ) = j2m=2%cos(8)cos ((;b 21 - )>< a6, p) (19)
From Eq.(16)-Eq.(17),
da(6,9)]" 9a(6, $)
fol3] a0
Lint
R; 2 Lot — 1
= (27‘[ e cos(@)) Z cos? (d) — o )
A = Lint
int—
Lint/2
R 5 Lext P 1
+ (27‘[ ext cos(@)) Z cos? (¢ L )
A =2 Lexe
ext—
Lext/2
= (zn@ cos(é?)>2 Line + (ZnRext cos(@))2 Lext (20)
A 2 A 2
From Eq. (18)-Eq. (19),
da(6,$)]" 9a(6,$)
b ad
R 2 Lint f 1
= (27‘[ e sin(@)) Z sin? (d) L )
A ~, Lint
int—
Lint/2
R 2 Lext f 1
+ (27‘[ ext sin(@)) Z sin? (d) — 2= )
A 2= Lexe
ext—
Lext/2
_ (an"”t sin(e))2 Line (ZnRe’“ sin(@))2 Lext o1y
A 2 A 2

From Eq. (16) and Eq.(19),
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6a(0,¢)H6a(0,¢)_( M)zsin(ze) Line ( _ t’im—l)
[ a0 ap 2 ) 4 Zf’im=1sm 2¢ —2m Lint +

0

(271@)2@2%’“ sin (2¢—2n*’e’“tl) 0 (22)

A Cext=1

0

using Eq.(20)-Eq.(22) in Eq.(13), we have

Fo = 4M (F2)" (RheLine + RiceLexe)c05(0) (23)
F9’¢ = O, (24)
F¢¢> = 4M (TT GS) (Rmt int T Rext ext)Sinz(e)' (25)

Using Eq.(23)-Eq.(24) in Eq.(14), we have
-1

Rine\ 2 Rext 2
CRB(6) = Fy} =—sec2(0)[ 27r mt) Lo + (27r ;’“) Love| (26)

and

-1

N2 2
CRB(¢) = Fyl, = ~csc2(9) [(2n B ) L+ (20220) L | (27)

Consequently, the Cram’Er-Rao Bounds for the 3-Configurations are Given as
Follows:

For the configuration one

CRBe1(8) = 25 5ec?(O) 4l + 6Ll (2) (28)

Os

and

CRB,_,(¢) =~ ¢5c2(0)[4L;,, + 64L,,,] ("")2 29
c—1 d) _EFCSC int ext 0_ ( )

N

For the configuration two
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2
CRB_3(6) = 3o 5ec2(O)[16Line + 64Laxe] ™ (22) (30)

N

and

CRB,_,(¢) = ——= csc?(0)[16L 64L,,.,.] " w31
c-2 (nb _M4n2CSC int+ ext (a) ( )

N

For the configuration three

CRB,_,(0) = L1 sec2(0)[36L;,, + 64L ]-1(%)2 32
c-3 —MMIZSGC int ext . ( )

N

and

RB 11 2(g9 L 41 —1Un233
C c—3(¢)—ﬁ4—nzcsc()[36 int + 64Ly¢] (U_) (33)

N

Observation: Comparing Eq.(28)-Eq.(33), it is clear that since L;,; < Ly, the Cram’er-
Rao bounds decreases with increase in the inner radius implying that the estimation

accuracy (precision) increases as the inner radius approaches the outer radius.

IV The Cram’er-Rao Bound Analysis for the 3-Sub-Configuration Based on the
Sensors” Distribution

These sub-configurations are based on the sensors distribution on the inner-outer rings
while maintaining the overall number of sensors to be equal. The distributions are in 60%
—40%, 50% — 50% and 40%—60% of the overall number of sensors on the inner-outer rings

respectively. For instance, consider the overall number of sensors to be 40.

IV-A. Sub-Configuration One
This sub-configuration adopts 60% — 40% sensors distribution implying that the inner
ring has 24 sensors while the outer ring has 16 sensors. i.e L;;,; = 24 and L, = 16. Now

inserting L;,, = 24 and L,,, = 16 in Eq.(28)-Eq.(33), we have
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(21)2M (Z—)Z cos2(6)CRB,_,(6) = (2m)?M (Z—)Z c0s2(0)CRBo_.(¢)

=[(4x24)+ (64 x 16)]?
=[1120]! (34)

(21)2M (:—)2 c0s2(0)CRB,_,(0) = (2m)2M (Z—)Z c0s2(0)CRBo_.(¢)

n n

= [(16 x 24) + (64 x 16)]*
= [1408]! (35)

(2m)2M (Z—)Z c0s2(8)CRB,_,(0) = (21)?M (Z—)Z cos2(0)CRB_, (¢)

n

= [(36 x 24) + (64 x 16)]*
= [1888]! (36)

IV-B. Sub-Configuration Two
This sub-configuration adopts 50% — 50% sensors distribution implying that both the
inner ring and the outer ring have equal number of sensors. i.e L;,; = 20 and L, = 20.
Now inserting L;,, = 20 and L., = 20in Eq.(28)-Eq.(33), we have
(2m)*M (?)2 cos?(8)CRB._,(0) = 2m)*M (%)2 cos?(8)CRB,_,(¢)
n

=[(4 x 20) + (64 x 20)]_1
= [1360]* (37)
(2m)2M (Z—)Z cos2(8)CRB,_,(0) = (2m)*M (Z—)Z cos2(8)CRB,_,(¢)

n n

= [(16 x 20) + (64 x 20)]*
= [1600]"? (38)
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(21)2M (:—)2 cos2(6)CRB,_,(0) = (2m)?M (Z—)Z c0s2(0)CRB_,(¢)

n n

= [(36 % 20) + (64 x 20)]*
= [2000]* (39)

IV-C. Sub-Configuration Three
This sub-configuration adopts 40% — 60% sensors distribution implying that the inner

ring has 16 sensors while the outer ring has 24 sensors. i.e L;,; = 16 and L.y, = 24. Now

inserting L;,, = 16 and L,,; = 24 in Eq.(28)-Eq.(33), we have
05\? 0s\?
(21)2M (0—> c0s2(8)CRB,_5(8) = (2m)*M (U—) c0s2(8)CRB,_5($)
n n

=[(4x16) + (64 x 24)] !
= [1600]71 (40)

(2m)2M (Z—)z cos2(8)CRB,_;(0) = (21)2M (Z—)Z cos2(0)CRB_; (¢)

= [(16 x 16) + (64 x 24)]™*
=[1792]1 (41)

(2m)2M (Z—)Z cos2(8)CRB,_,(0) = (2m)M (Z—)Z cos2(8)CRB,_; (¢)

= [(36 x 16) + (64 x 24)]*
=[2112]? (42)

Observation: From Eq.(34)-Eq.(42), it is clear that, the Cram” er-Rao bounds decreases as
the inner radius approaches the outer radius across all the sub-configurations. However,
configuration three has the lowest Cram” er-Rao bounds in all the sub-configurations and
hence has the best estimation accuracy among the proposed configurations of the 2-ring

concentric planar array.

African Journal of Science, Technology and Engineering Vol. 1, 2020 Page 16 of 22



Conclusion

Three configurations of a 2-ring concentric planar array with their respective sub-
configurations are proposed. The configurations are based on the variation of the inner
ring’s radius as the outer ring’s radius is held constant while the respective sub-
configurations are based on the distribution of sensors on the inner-outer rings in which
the distributions are in 60% — 40%, 50% — 50% and 40% — 60%. The comparison of the
estimation accuracy for the aforementioned configurations and their respective sub-
configurations in direction finding is verified via the Cram” er-Rao bound derivation and
analysis. It has been observed that the Cram” er-Rao bound decreases as the inner radius
approaches the outer radius and the configuration three has the lowest Cram” er-Rao
bound across all the sub-configurations. Thus among the proposed configurations of the
2-ring concentric planar array, configuration three has the best estimation accuracy
(precision) in direction finding. Observations from this study would greatly help
engineers to economically utilize a given number of sensors and hence minimizing

hardware cost.
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