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Abstract 

Direction finding is a key area of sensor array processing which is encountered in a broad range 

of important engineering applications. These applications include wireless communication, rada 

and sonar, among others. This work compares estimation accuracy of 3-configurations (based on 

the inner radius variation and constant outer radius) of a uniform 2-ring concentric planar array 

in direction finding via the Cramer-Rao bound derivation and analysis. The 3-configurations’ 

estimation accuracy is articulated to their respective sub-configurations based on the sensors 

distribution in each ring. The sub-configurations use equal overall number of sensors (multiple of 

4) but with 60% - 40% distribution, 50% - 50% distribution and 40% - 60% distribution on the 

inner-outer rings respectively. It is found that the estimation accuracy increases as the inner 

radius approaches the outer radius and thus configuration three (where the inner radius equals 

three-quarters of the outer radius) has the best precision in direction finding compared to 

configuration two (where the inner radius equals half of the outer radius) and configuration one 

(where the inner radius equals one-quarter of the outer radius). Furthermore, based on the sub-

configurations (where there is varying sensor distribution along the two rings), sub-configuration 

three (where 40% of the sensors are distributed along the inner radius and 60% of the sensors are 

distributed along the outer radius) is found to have the best estimation accuracy compared to the 

other two sub-configurations (50% - 50% and 60% - 40% distributions, respectively). It is 

observed that the closer the inner radius approaches the outer radius and/or the lower the inner-

outer radius’ sensor ratio, the better the estimation accuracy. It is thus recommended that all 

sensors should be distributed along the outer radius for better estimation accuracy. These findings 

would help direction finders such as engineers to economically utilize a given number of sensors. 
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Introduction 

Direction finding (DF) is also termed as direction-of-arrival (DoA) estimation problem. It 

basically refers to the problem of estimating angles-of-arrival (AoA) of an incident signal 

from an emitter (for instance plane wave or multiple plane waves) [1]. DF is a crucial 

technique in array signal processing following its wide-spread fields of applications 

especially in engineering. Some application areas include: radar, sonar, wireless 

communication, medical diagnosis and treatment, electronic surveillance, radio astrology 

[2]–[4], position location and tracing systems [5]. This is simply because it is a major 

method of location determination, in security services especially by reconnaissance of 

radio communications of criminal organization and in military intelligence by detecting 

activities of potential enemies and gaining information on enemy’s communication order. 

Due to its diverse applications and difficulty in obtaining optimum estimator, the topic 

has attracted significant attention over the last several decades. 

DF problem has so far been solved by employing various methods for both near-field and 

far-field sources emitting signal which is received by an array of sensors [6]. The methods 

aim to estimate the azimuth-polar angles-of-arrival. Some of the methods which have 

been employed in DF are: Maximum likelihood (ML) method [7], MUSIC (MUltiple 

SIgnal Classification) [8], ESPRIT (Estimation of Signal Parameters via Rotational 

Invariance Technique) [9], Cram´er-Rao Bound (CRB) [4], among other techniques. The 

Cram´er-Rao Bound which is utilized in this work has been found to be the most accurate 

technique in DF for it is the lowest error bound that any unbiased estimator can achieve 

and the simplest due to its simplicity in computations. 
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The aforementioned algorithms solve DF problem based on sensors either randomly 

distributed or arranged in a desired geometric pattern. The advantage of adopting any 

sensor-array geometry is mainly to improve the estimation performance. Among the 

many geometries that have been used in DF, circular and concentric circular geometries 

have a little bit more unique advantages which include: offering full rotational symmetry 

about the origin, flexibility in array pattern synthesis and design both in narrow band 

and broad band beam-forming applications, provision of almost invariant azimuth angle 

coverage and they can also yield invariant array pattern over a certain frequency band 

for beam-forming in 3-dimensions [17]–[21]. Concentric circular array geometries alone 

offer less mutual coupling effect due to their significant structure of the ring array [23], 

they yield smaller side lobes in beam-forming [22]–[26], provide higher angle resolution 

compared to uniform circular array geometries and requires less area for the same 

number of sensor elements [27] and they increase array’s spatial aperture [17]–[21], [28], 

[29]. 

 

Despite the fact that the concentric circular arrays increase array’s spatial aperture, the 

strategy in which the aperture is widened is a great concern as well as the number and 

the distribution of the sensors along the aperture. This now raises an important question 

that, how would the proportional variation of the inner radius while the outer radius is 

held constant affect the estimation accuracy of a 2-ring concentric planar array in 

direction finding? and how would varying the inner radius alone translate to sensors 

distribution on the inner-outer rings for the precision in direction finding? This work now 

proposed 3-configurations and their respective sub-configurations of a 2-ring concentric 

planar array which maintains all the advantages of concentric circular arrays and uses 

minimal number of sensors with an inter-spacing not exceeding half a wavelength. The 

three configurations are based on the proportional variation of the inner ring’s radius as 

the outer ring’s radius is held constant while the respective sub-configurations are based 
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on the distribution of sensors on the inner-outer rings in which the distributions are in 

60%−40%, 50%−50% and 40%−60%. For the configuration one, the inner radius is a 

quarter of the outer radius, configuration two’s radius is ahalf of the outer radius and 

configuration three’s radius is three quarters of the outer radius. The sub-configurations 

use equal overall number of sensors (multiple of 4) but with 60% − 40% distribution, 50% 

− 50% distribution and 40% − 60% distribution on the inner-outer rings respectively. The 

paper compares the estimation accuracy among the three configuration and their 

respective sub-configurations in DF via the derivation and analysis of their Cram´er-Rao 

bounds. 

Finally, the paper consists of five sections in which Section I is the introduction, Section 

II presents the array response vector, Section III gives the Cram´er-Rao bound review and 

derivation, Section IV presents the Cram´er-Rao bound analysis for the 3-sub-

configuration based on the sensors distribution, and Section V gives the conclusion. 

 

II Array Response Vector (ARV) 

II-A. Review Basics of ARV Using the General 2-Ring Concentric Planar array of 

Isotropic Sensors 

Consider two concentric circles of radii 𝑅𝑖𝑛𝑡  and 𝑅𝑒𝑥𝑡 sharing a common center at the 

Cartesian origin and lying on the x-y plane. See Figure 1. 
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Figure 1: A general two-ring concentric planar array of isotropic sensors lying on the 

horizontal 𝑥-𝑦 plane and centered at the Cartesian origin. 

 

The inner and the outer rings have 𝐿𝑖𝑛𝑡  and 𝐿𝑒𝑥𝑡 number of isotropic sensors arranged on 

the rings’ circumference respectively with equal inter-sensor spacing between any two 

adjacent sensors. The location of the ℓ-𝑡ℎ sensor in terms of the Cartesian coordinates 

equals 

𝒑ℓ = {
[𝑅𝑖𝑛𝑡𝑐𝑜𝑠

2𝜋(ℓ𝑖𝑛𝑡−1)

𝐿𝑖𝑛𝑡
, 𝑅𝑖𝑛𝑡𝑠𝑖𝑛

2𝜋(ℓ𝑖𝑛𝑡−1)

𝐿𝑖𝑛𝑡
, 0 ]

𝑻

, 1 ≤ ℓ𝑖𝑛𝑡 ≤ 𝐿𝑖𝑛𝑡

[𝑅𝑒𝑥𝑡𝑐𝑜𝑠
2𝜋(ℓ𝑒𝑥𝑡−1)

𝐿𝑒𝑥𝑡
, 𝑅𝑖𝑛𝑡𝑠𝑖𝑛

2𝜋(ℓ𝑒𝑥𝑡−1)

𝐿𝑒𝑥𝑡
, 0 ]

𝑻

, 1 ≤ ℓ𝑒𝑥𝑡 ≤ 𝐿𝑒𝑥𝑡

                                         (1) 

where T denotes the transposition. 
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Consider an incident signal from a far-field emitter impinging on the origin at a polar- 

azimuth angles-of-arrival of 𝜃 − 𝜙 where θ ∈ (0,π) and 𝜙 ∈ (0,2π). Then, the 2-ring’s array 

response vector equals 

𝒂(𝜃,𝜙) = [
𝒂𝒊𝒏𝒕(𝜃, 𝜙)

𝒂𝒆𝒙𝒕(𝜃, 𝜙)
] ,                                                          (2) 

  

where the ℓ-𝑡ℎ entries for𝒂𝒊𝒏𝒕 and𝒂𝒆𝒙𝒕  are respectively given as: 

[𝒂𝑖𝑛𝑡(𝜃, 𝜙)]ℓ = 𝑒𝑥𝑝 {𝑗
2𝜋𝑅𝑖𝑛𝑡

𝜆
𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −

2𝜋(ℓ𝑖𝑛𝑡−1)

𝐿𝑖𝑛𝑡
)}      (3)         

                  

For ℓ𝑖𝑛𝑡 = 1,2,⋯ 𝐿𝑖𝑛𝑡 and 

[𝒂𝑒𝑥𝑡(𝜃, 𝜙)]ℓ = 𝑒𝑥𝑝 {𝑗
2𝜋𝑅𝑒𝑥𝑡

𝜆
𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −

2𝜋(ℓ𝑒𝑥𝑡−1)

𝐿𝑒𝑥𝑡
)}                (4) 

for ℓ𝑒𝑥𝑡 = 1,2,⋯𝐿𝑒𝑥𝑡. In the above entries, λ is the wavelength of the incident signal. 

 

II-B. ARV of the Proposed 3-Configurations of the 2-Ring Concentric Planar Array 

The 3-configurations of the 2-ring concentric planar array proposed in this work is based 

on the variation of the inner ring’s radius in relation to the outer ring’s radius while 

holding the latter radius constant. In all the configurations, the outer radius is hereby 

taken as 8λ. Consider the illustration of the configurations as follows: 

II-B.1. Configuration One (C-1): This configuration has the following properties. See 

fig 2. 

i. 𝑅𝑒𝑥𝑡 = 8𝜆 

ii. 𝑅𝑖𝑛𝑡 =
1

4
(𝑅𝑒𝑥𝑡) = 2𝜆 

 

With reference to Eq.(3)- Eq.(4) in Eq.(2), the array response vector for the C-1 is given 

as 
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𝒂𝐶−1(𝜃, 𝜙) = [
𝑒𝑥𝑝 {𝑗4𝜋𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −

2𝜋(ℓ𝑖𝑛𝑡−1)

𝐿𝑖𝑛𝑡
)} , 1 ≤ ℓ𝑖𝑛𝑡 ≤ 𝐿𝑖𝑛𝑡

𝑒𝑥𝑝 {𝑗16𝜋𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −
2𝜋(ℓ𝑒𝑥𝑡−1)

𝐿𝑒𝑥𝑡
)} , 1 ≤ ℓ𝑒𝑥𝑡 ≤ 𝐿𝑒𝑥𝑡

]                               (5) 

 

 

Figure 2: The proposed configuration one. 𝛽 and 𝛼 symbolizes 𝐿𝑖𝑛𝑡 and 𝐿𝑒𝑥𝑡 respectively. 

 

II-B.2. Configuration Two (C-2): This configuration has the following properties.  

i. 𝑅𝑒𝑥𝑡 = 8𝜆 

ii. 𝑅𝑖𝑛𝑡 =
1

2
(𝑅𝑒𝑥𝑡) = 4𝜆 

Referring to Eq.(3)-Eq.(4) in Eq.(2), the array response vector for the C-2  equals 

𝒂𝐶−2(𝜃, 𝜙) = [
𝑒𝑥𝑝 {𝑗8𝜋𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −

2𝜋(ℓ𝑖𝑛𝑡−1)

𝐿𝑖𝑛𝑡
)} , 1 ≤ ℓ𝑖𝑛𝑡 ≤ 𝐿𝑖𝑛𝑡

𝑒𝑥𝑝 {𝑗16𝜋𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −
2𝜋(ℓ𝑒𝑥𝑡−1)

𝐿𝑒𝑥𝑡
)} , 1 ≤ ℓ𝑒𝑥𝑡 ≤ 𝐿𝑒𝑥𝑡

]                               (6) 
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Figure 3: The proposed configuration two. 𝛽 and 𝛼 symbolizes 𝐿𝑖𝑛𝑡 and 𝐿𝑒𝑥𝑡 respectively 

 

II-B.3. Configuration Three (C-3): This configuration has the following properties. See 

fig. 4. 

i. 𝑅𝑒𝑥𝑡 = 8𝜆 

ii. 𝑅𝑖𝑛𝑡 =
1

2
(𝑅𝑒𝑥𝑡) = 6𝜆 

With reference to Eq.(3)-Eq.(4) in Eq.(2), the array response vector for the C-3 equals 

𝒂𝐶−3(𝜃, 𝜙) = [
𝑒𝑥𝑝 {𝑗12𝜋𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −

2𝜋(ℓ𝑖𝑛𝑡−1)

𝐿𝑖𝑛𝑡
)} , 1 ≤ ℓ𝑖𝑛𝑡 ≤ 𝐿𝑖𝑛𝑡

𝑒𝑥𝑝 {𝑗16𝜋𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠 (𝜙 −
2𝜋(ℓ𝑒𝑥𝑡−1)

𝐿𝑒𝑥𝑡
)} , 1 ≤ ℓ𝑒𝑥𝑡 ≤ 𝐿𝑒𝑥𝑡

]                               (7) 
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Figure 4: The proposed configuration three. 𝛽 and 𝛼  symbolizes 𝐿𝑖𝑛𝑡 and 

𝐿𝑒𝑥𝑡 respectively. 

 

III The Cram´er-Rao Bound Review and Derivation 

III-A. The Statistical Data Model 

Let’s consider a simple noise-corrupted replica of collected dataset at time instant m given 

by 

𝒛(𝑚) =  𝒂(𝜃,𝜙)𝑠(𝑚) + 𝒏(𝑚)     (8) 

where n(m) is modeled as a complex-valued zero-mean additive white Gaussian noise 

(AWGN) with a prior known variance of 𝜎𝑛
2, and s(m) is a scalar incident signal modeled 

as a white Gaussian complex-valued with a prior known variance of 𝜎𝑠
2 [1], [6], [10], [12]–

[16], [18]. Then, for multiple-discrete-time instances M, the dataset is represented as 

𝒛̌ ≔ [{𝒛(1)}𝑇 , {𝒛(2)}𝑇 ,⋯ , {𝒛(𝑀)}𝑇]𝑇 = 𝒔⊗ 𝒂(𝜃, 𝜙) + 𝒏̌   (9) 
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where superscript T denotes transposition, ⊗ denotes the Kronecker product [12], [15] 

and 

𝑠 ≔ [𝑠(1), 𝑠(2),⋯ , 𝑠(𝑀)]𝑇 

 𝒏̌ ≔ [{𝒏(1)}𝑇 , {𝒏(2)}𝑇 ,⋯ , {𝒏(𝑀)}𝑇]𝑇 . 

 

 

 

III-B. The Fisher Information Matrix 

The Fisher information matrix measures the amount of information that an observable 

random variable carries about an unknown parameter [31], [32]. Suppose the two 

parameters to-be-estimated are collected as entries of the 2 × 1 vector  𝜉 ∈ [𝜃, 𝜙]. Then the 

Fisher information matrix (FIM) F(𝜉) has a (k,r)th entry equal to (see (3.8) on page 72 of 

[30]) 

                          [𝑭(𝝃)]𝑘,𝑟 = 2𝑅𝑒 {[
𝜕𝝁

𝜕𝝃𝒌
]
𝐻

𝜞−1
𝜕𝝁

𝜕𝝃𝑟
} + 𝑇𝑟 {𝜞−1 [

𝜕𝜞

𝜕𝝃𝒌
]
𝐻

𝜞−1
𝜕𝜞

𝜕𝝃𝒓
} (10) 

where Re{·} signifies the real-value part of the entity inside the curly brackets, Tr{·} 

denotes the trace of the entity inside the curly brackets, the superscript H indicates 

conjugate transposition. 

In equation (10), 

𝝁 ≔ 𝐸[𝒛̌] =  𝒔 ⊗ 𝒂(𝜃, 𝜙) (11) 

𝚪 ≔ 𝐸[(𝒛̌ − 𝝁)(𝒛̌ − 𝝁)𝑯] = 𝜎𝑛
2𝑰(𝐿𝑖𝑛𝑡+𝐿𝑒𝑥𝑡)𝑀 (12) 

are the mean and the covariance matrix of the data model where E[·] represents the 

statistical expectation of the entity inside the square brackets and 𝑰(𝐿𝑖𝑛𝑡+𝐿𝑒𝑥𝑡)𝑀 symbolizes 

an identity matrix of size (Lint + Lext)M. Clearly, Γ in Eq,(12) is functionally independent 

of both θ and 𝜙, and thus the second term of (10) equals zero. Hence Eq.(10) reduces to 

                          [𝑭(𝝃)]𝑘,𝑟 =
2

𝜎𝑠2
𝑅𝑒 {[

𝜕𝝁

𝜕𝝃𝒌
]
𝐻 𝜕𝝁

𝜕𝝃𝑟
} 

Where 
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  [
𝜕𝝁

𝜕𝝃𝒌
]
𝑯 𝜕𝝁

𝜕𝝃𝑟
= [𝒔 ⊗

𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒌
]

𝑯

[𝒔 ⊗
𝜕𝒂(𝜃, 𝜙)

𝜕𝝃𝒓
] 

                          = 𝒔𝑯𝒔⏟
≔𝑀𝜎𝑠

2

⊗ {[
𝜕𝒂(𝜃, 𝜙)

𝜕𝝃𝒌
]

𝑯

[
𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒓
]} 

                                                                    = 𝑀𝜎𝑠
2 [
𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒌
]
𝐻

[
𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒓
]. 

Hence, 

                          [𝑭(𝝃)]𝑘,𝑟 = 2𝐌
𝜎𝑠
2

𝜎𝑛
2 𝑅𝑒 {[

𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒌
]
𝑯

[
𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒓
]}. (13) 

The Fisher information matrix equals 

𝑭(𝝃) = [
𝐹𝜃,𝜃 𝐹𝜃,𝜙
𝐹𝜙,𝜃 𝐹𝜙,𝜙

],   

the inverse of which gives Cram´er-Rao bound of θ and 

𝜙: 

[
𝐶𝑅𝐵(𝜃) ∗
∗ 𝐶𝑅𝐵(𝜙)

]  = [
𝐹𝜃,𝜃 𝐹𝜃,𝜙
𝐹𝜙,𝜃 𝐹𝜙,𝜙

]

−1

          (14) 

 

  

Iii-C. The Cram´Er-Rao Bound Derivation 

Here we first derive the Cram´er-Rao bound for the general 2-ring concentric planar array 

then use the consequent results to give the Cram´er-Rao bounds for the 3-configurations. 

From Eq.(2), we have 

𝜕𝒂(𝜃,𝜙)

𝜕𝝃𝒌
= [[

𝜕𝒂𝒊𝒏𝒕(𝜃,𝜙)

𝜕𝝃𝒌
]
𝑯

, [
𝜕𝒂𝒆𝒙𝒕(𝜃,𝜙)

𝜕𝝃𝒌
]
𝑯

]
𝑻

,                                              (15) 

where the ℓ -th entries of 
𝜕𝒂𝒊𝒏𝒕(𝜃,𝜙)

𝜕𝜃
  and

 𝜕𝒂𝒆𝒙𝒕(𝜃,𝜙)

𝜕𝜃
     for ℓ𝑖𝑛𝑡 = 1,2,⋯𝐿𝑖𝑛𝑡  and ℓ𝑒𝑥𝑡 =

1,2,⋯𝐿𝑒𝑥𝑡, are respectively given by 

[
𝜕𝒂𝒊𝒏𝒕(𝜃,𝜙)

𝜕𝜃
]
ℓ
= 𝑗2𝜋

𝑅𝑖𝑛𝑡

𝜆
𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠 (𝜙 − 2𝜋

ℓ𝑖𝑛𝑡−1

𝐿𝑖𝑛𝑡
) × 𝒂(𝜃, 𝜙)            (16) 

and 

[
𝜕𝒂𝒆𝒙𝒕(𝜃,𝜙)

𝜕𝜃
]
ℓ
= 𝑗2𝜋

𝑅𝑒𝑥𝑡

𝜆
𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠 (𝜙 − 2𝜋

ℓ𝑒𝑥𝑡−1

𝐿𝑒𝑥𝑡
) × 𝒂(𝜃, 𝜙)           (17) 
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 Similarly, the respective ℓ-th entries of
 𝜕𝒂𝒊𝒏𝒕(𝜃,𝜙)

𝜕𝜙
   and

 𝜕𝒂𝒆𝒙𝒕(𝜃,𝜙)

𝜕𝜙
  equals 

[
 𝜕𝒂𝒊𝒏𝒕(𝜃,𝜙)

𝜕𝜙
]
ℓ
= 𝑗2𝜋

𝑅𝑖𝑛𝑡

𝜆
𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠 (𝜙 − 2𝜋

ℓ𝑖𝑛𝑡−1

𝐿𝑖𝑛𝑡
) × 𝒂(𝜃, 𝜙)           (18) 

and 

[
 𝜕𝒂𝒆𝒙𝒕(𝜃,𝜙)

𝜕𝜙
 ]
ℓ
= 𝑗2𝜋

𝑅𝑒𝑥𝑡

𝜆
𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠 (𝜙 − 2𝜋

ℓ𝑒𝑥𝑡−1

𝐿𝑒𝑥𝑡
) × 𝒂(𝜃, 𝜙)           (19)  

From Eq.(16)-Eq.(17), 

[
𝜕𝒂(𝜃, 𝜙)

𝜕θ
]

𝐻
𝜕𝒂(𝜃, 𝜙)

𝜕θ

= (2𝜋
𝑅𝑖𝑛𝑡
𝜆
cos (𝜃))

2

∑ 𝑐𝑜𝑠2 (𝜙 − 2𝜋
ℓ𝑖𝑛𝑡 − 1

𝐿𝑖𝑛𝑡
)

𝐿𝑖𝑛𝑡

ℓ𝑖𝑛𝑡=1⏟                  
𝐿𝑖𝑛𝑡 2⁄

+ (2𝜋
𝑅𝑒𝑥𝑡
𝜆
cos (𝜃))

2

∑ 𝑐𝑜𝑠2 (𝜙 − 2𝜋
ℓ𝑒𝑥𝑡 − 1

𝐿𝑒𝑥𝑡
)

𝐿𝑒𝑥𝑡

ℓ𝑒𝑥𝑡=1⏟                  
𝐿𝑒𝑥𝑡 2⁄

= (2𝜋
𝑅𝑖𝑛𝑡
𝜆
cos (𝜃))

2 𝐿𝑖𝑛𝑡
2
+ (2𝜋

𝑅𝑒𝑥𝑡
𝜆
cos (𝜃))

2 𝐿𝑒𝑥𝑡
2
 (20) 

From Eq. (18)-Eq. (19), 

[
𝜕𝒂(𝜃, 𝜙)

𝜕ϕ
]

𝐻
𝜕𝒂(𝜃,𝜙)

𝜕ϕ

= (2𝜋
𝑅𝑖𝑛𝑡
𝜆
sin (𝜃))

2

∑ 𝑠𝑖𝑛2 (𝜙 − 2𝜋
ℓ𝑖𝑛𝑡 − 1

𝐿𝑖𝑛𝑡
)

𝐿𝑖𝑛𝑡

ℓ𝑖𝑛𝑡=1⏟                  
𝐿𝑖𝑛𝑡 2⁄

+ (2𝜋
𝑅𝑒𝑥𝑡
𝜆
sin (𝜃))

2

∑ 𝑠𝑖𝑛2 (𝜙 − 2𝜋
ℓ𝑒𝑥𝑡 − 1

𝐿𝑒𝑥𝑡
)

𝐿𝑒𝑥𝑡

ℓ𝑒𝑥𝑡=1⏟                  
𝐿𝑒𝑥𝑡 2⁄

= (2𝜋
𝑅𝑖𝑛𝑡
𝜆
sin (𝜃))

2 𝐿𝑖𝑛𝑡
2
+ (2𝜋

𝑅𝑒𝑥𝑡
𝜆
sin (𝜃))

2 𝐿𝑒𝑥𝑡
2
 (21) 

 

From Eq. (16) and Eq.(19), 
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[
𝜕𝒂(𝜃,𝜙)

𝜕θ
]
𝐻 𝜕𝒂(𝜃,𝜙)

𝜕ϕ
= (2𝜋

𝑅𝑖𝑛𝑡

𝜆
)
2 𝑠𝑖𝑛(2𝜃)

4
∑ 𝑠𝑖𝑛 (2𝜙 − 2𝜋

ℓ𝑖𝑛𝑡−1

𝐿𝑖𝑛𝑡
)

𝐿𝑖𝑛𝑡
ℓ𝑖𝑛𝑡=1⏟                  

0

 +

                         (2𝜋
𝑅𝑒𝑥𝑡

𝜆
)
2 𝑠𝑖𝑛(2𝜃)

4
∑ 𝑠𝑖𝑛 (2𝜙 − 2𝜋

ℓ𝑒𝑥𝑡−1

𝐿𝑒𝑥𝑡
)

𝐿𝑒𝑥𝑡
ℓ𝑒𝑥𝑡=1⏟                  

0

= 0  (22) 

 

using Eq.(20)-Eq.(22) in Eq.(13), we have 

𝐹𝜃,𝜃 = 4𝑀(
𝜋

𝜆

𝜎𝑠

𝜎𝑛
)
2
(𝑅𝑖𝑛𝑡

2 𝐿𝑖𝑛𝑡 + 𝑅𝑒𝑥𝑡
2 𝐿𝑒𝑥𝑡)𝑐𝑜𝑠

2(𝜃)           (23) 

 

𝐹𝜃,𝜙 = 0, (24) 

𝐹𝜙,𝜙 = 4𝑀 (
𝜋

𝜆

𝜎𝑠

𝜎𝑛
)
2
(𝑅𝑖𝑛𝑡

2 𝐿𝑖𝑛𝑡 + 𝑅𝑒𝑥𝑡
2 𝐿𝑒𝑥𝑡)𝑠𝑖𝑛

2(𝜃). (25) 

 

 

Using Eq.(23)-Eq.(24) in Eq.(14), we have 

𝐶𝑅𝐵(𝜃) = 𝐹𝜃,𝜙
−1 =

1

𝑀
𝑠𝑒𝑐2(𝜃) [(2𝜋

𝑅𝑖𝑛𝑡

𝜆
)
2

𝐿𝑖𝑛𝑡 + (2𝜋
𝑅𝑒𝑥𝑡

𝜆
)
2

𝐿𝑒𝑥𝑡]
−1

(26) 

and 

𝐶𝑅𝐵(𝜙) = 𝐹𝜙,𝜙
−1 =

1

𝑀
𝑐𝑠𝑐2(𝜃) [(2𝜋

𝑅𝑖𝑛𝑡

𝜆
)
2

𝐿𝑖𝑛𝑡 + (2𝜋
𝑅𝑒𝑥𝑡

𝜆
)
2

𝐿𝑒𝑥𝑡]
−1

(27) 

 

Consequently, the Cram´Er-Rao Bounds for the 3-Configurations are Given as 

Follows: 

For the configuration one 

𝐶𝑅𝐵𝑐−1(𝜃) =
1

𝑀

1

4𝜋2
𝑠𝑒𝑐2(𝜃)[4𝐿𝑖𝑛𝑡 + 64𝐿𝑒𝑥𝑡]

−1 (
𝜎𝑛

𝜎𝑠
)
2

 (28) 

and 

𝐶𝑅𝐵𝑐−1(𝜙) =
1

𝑀

1

4𝜋2
𝑐𝑠𝑐2(𝜃)[4𝐿𝑖𝑛𝑡 + 64𝐿𝑒𝑥𝑡]

−1 (
𝜎𝑛

𝜎𝑠
)
2

 (29) 

For the configuration two 
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𝐶𝑅𝐵𝑐−2(𝜃) =
1

𝑀

1

4𝜋2
𝑠𝑒𝑐2(𝜃)[16𝐿𝑖𝑛𝑡 + 64𝐿𝑒𝑥𝑡]

−1 (
𝜎𝑛

𝜎𝑠
)
2

 (30) 

and 

𝐶𝑅𝐵𝑐−2(𝜙) =
1

𝑀

1

4𝜋2
𝑐𝑠𝑐2(𝜃)[16𝐿𝑖𝑛𝑡 + 64𝐿𝑒𝑥𝑡]

−1 (
𝜎𝑛

𝜎𝑠
)
2

 (31) 

For the configuration three 

𝐶𝑅𝐵𝑐−3(𝜃) =
1

𝑀

1

4𝜋2
𝑠𝑒𝑐2(𝜃)[36𝐿𝑖𝑛𝑡 + 64𝐿𝑒𝑥𝑡]

−1 (
𝜎𝑛

𝜎𝑠
)
2

 (32) 

and 

𝐶𝑅𝐵𝑐−3(𝜙) =
1

𝑀

1

4𝜋2
𝑐𝑠𝑐2(𝜃)[36𝐿𝑖𝑛𝑡 + 64𝐿𝑒𝑥𝑡]

−1 (
𝜎𝑛

𝜎𝑠
)
2

 (33) 

 

  

Observation: Comparing Eq.(28)-Eq.(33), it is clear that since 𝐿𝑖𝑛𝑡 < 𝐿𝑒𝑥𝑡, the Cram´er-

Rao bounds decreases with increase in the inner radius implying that the estimation 

accuracy (precision) increases as the inner radius approaches the outer radius. 

 

IV The Cram´er-Rao Bound Analysis for the 3-Sub-Configuration Based on the 

Sensors´ Distribution 

These sub-configurations are based on the sensors distribution on the inner-outer rings 

while maintaining the overall number of sensors to be equal. The distributions are in 60% 

− 40%, 50% − 50% and 40%−60% of the overall number of sensors on the inner-outer rings 

respectively. For instance, consider the overall number of sensors to be 40. 

 

IV-A. Sub-Configuration One  

This sub-configuration adopts 60% − 40% sensors distribution implying that the inner 

ring has 24 sensors while the outer ring has 16 sensors. i.e 𝐿𝑖𝑛𝑡 = 24 and 𝐿𝑒𝑥𝑡 = 16. Now 

inserting 𝐿𝑖𝑛𝑡 = 24 and 𝐿𝑒𝑥𝑡 = 16 in Eq.(28)-Eq.(33), we have 
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(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−1(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−1(𝜙)

= [(4 × 24) + (64 × 16)]−1

= [1120]−1                                                                                      (34)  

 

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−1(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−1(𝜙)

= [(16 × 24) + (64 × 16)]−1

= [1408]−1                                                                                      (35)  

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−1(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−1(𝜙)

= [(36 × 24) + (64 × 16)]−1

= [1888]−1                                                                                      (36) 

 

   

IV-B. Sub-Configuration Two 

This sub-configuration adopts 50% − 50% sensors distribution implying that both the 

inner ring and the outer ring have equal number of sensors. i.e 𝐿𝑖𝑛𝑡  =  20 and 𝐿𝑒𝑥𝑡 =  20. 

Now inserting 𝐿𝑖𝑛𝑡  =  20 and 𝐿𝑒𝑥𝑡 =  20in Eq.(28)-Eq.(33), we have 

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−2(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−2(𝜙)

= [(4 × 20) + (64 × 20)]−1

= [1360]−1                                                                                      (37) 

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−2(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−2(𝜙)

= [(16 × 20) + (64 × 20)]−1

= [1600]−1                                                                                      (38) 



African Journal of Science, Technology and Engineering Vol. 1, 2020          Page 16 of 22   

   

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−2(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−2(𝜙)

= [(36 × 20) + (64 × 20)]−1

= [2000]−1                                                                                      (39) 

 

IV-C. Sub-Configuration Three 

This sub-configuration adopts 40% − 60% sensors distribution implying that the inner 

ring has 16 sensors while the outer ring has 24 sensors. i.e 𝐿𝑖𝑛𝑡  =  16 and 𝐿𝑒𝑥𝑡 =  24. Now 

inserting 𝐿𝑖𝑛𝑡  =  16 and 𝐿𝑒𝑥𝑡 =  24 in Eq.(28)-Eq.(33), we have 

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−3(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−3(𝜙)

= [(4 × 16) + (64 × 24)]−1

= [1600]−1                                                                                      (40) 

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−3(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−3(𝜙)

= [(16 × 16) + (64 × 24)]−1

= [1792]−1                                                                                      (41) 

 

(2𝜋)2𝑀(
𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−3(𝜃) ≡ (2𝜋)
2𝑀(

𝜎𝑠
𝜎𝑛
)
2

𝑐𝑜𝑠2(𝜃)𝐶𝑅𝐵𝑐−3(𝜙)

= [(36 × 16) + (64 × 24)]−1

= [2112]−1                                                                                      (42) 

 

Observation: From Eq.(34)-Eq.(42), it is clear that, the Cram´ er-Rao bounds decreases as 

the inner radius approaches the outer radius across all the sub-configurations. However, 

configuration three has the lowest Cram´ er-Rao bounds in all the sub-configurations and 

hence has the best estimation accuracy among the proposed configurations of the 2-ring 

concentric planar array. 
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Conclusion 

Three configurations of a 2-ring concentric planar array with their respective sub-

configurations are proposed. The configurations are based on the variation of the inner 

ring’s radius as the outer ring’s radius is held constant while the respective sub-

configurations are based on the distribution of sensors on the inner-outer rings in which 

the distributions are in 60% − 40%, 50% − 50% and 40% − 60%. The comparison of the 

estimation accuracy for the aforementioned configurations and their respective sub-

configurations in direction finding is verified via the Cram´ er-Rao bound derivation and 

analysis. It has been observed that the Cram´ er-Rao bound decreases as the inner radius 

approaches the outer radius and the configuration three has the lowest Cram´ er-Rao 

bound across all the sub-configurations. Thus among the proposed configurations of the 

2-ring concentric planar array, configuration three has the best estimation accuracy 

(precision) in direction finding. Observations from this study would greatly help 

engineers to economically utilize a given number of sensors and hence minimizing 

hardware cost. 
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